Advertisement

Quality Control in the Context of Industry 4.0

  • Radu Godina
  • João C. O. MatiasEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 281)

Abstract

Palpable progress in Internet of Things (IoT) and Wireless Sensor Networks (WSN) are quickly turning Industry 4.0 a reality thus having a deep effect on every angle of the manufacturing industry, from logistics to quality control. The measurement for the quality control no longer will be made in a distinct metrology section, but instantaneously on the production line. Smart sensors might be able to register and transmit the recorded data yet no real added-value is obtained from this if the recorded data is not utilized to decide how to improve a process. However, the methods utilized on how to use this is a substantial challenge and it should lead engineers to make the correct decisions. The continuous circulation of information from WSNs to the decision makers and backwards is the foundation of Industry 4.0. Thus, a comprehensive analysis of the effect of Industry 4.0 on quality control is imperative.

Keywords

Quality control Internet of things Industry 4.0 Wireless sensor networks Smart factory 

Notes

Acknowledgements

This work was financially supported by the research unit on Governance, Competitiveness and Public Policy (project POCI-01-0145-FEDER-006939), funded by FEDER funds through COMPETE2020—POCI and by national funds through FCT—Fundação para a Ciência e a Tecnologia. Radu Godina would like to acknowledge financial support from Fundação para a Ciência e Tecnologia (UID/EMS/00667/2019).

References

  1. 1.
    Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6, 239–242 (2014)Google Scholar
  2. 2.
    Salkin, C., Oner, M., Ustundag, A., Cevikcan, E.: A conceptual framework for Industry 4.0. In: Industry 4.0: Managing The Digital Transformation. pp. 3–23. Springer, Cham (2018)Google Scholar
  3. 3.
    Foidl, H., Felderer, M.: Research challenges of Industry 4.0 for quality management. In: Innovations in Enterprise Information Systems Management and Engineering. pp. 121–137. Springer, Cham (2015)Google Scholar
  4. 4.
    Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of Industry 4.0: key technologies, application case, and challenges. IEEE Access. 6, 6505–6519 (2018)Google Scholar
  5. 5.
    Ahuett-Garza, H., Kurfess, T.: A brief discussion on the trends of habilitating technologies for Industry 4.0 and smart manufacturing. Manuf. Lett. (2018)Google Scholar
  6. 6.
    Müller, J.M., Buliga, O., Voigt, K.-I.: Fortune favors the prepared: how SMEs approach business model innovations in Industry 4.0. Technol. Forecast. Soc. Change. 132, 2–17 (2018)Google Scholar
  7. 7.
    Mazali, T.: From industry 4.0 to society 4.0, there and back. AI Soc. 1–7 (2017)Google Scholar
  8. 8.
    Pedone, G., Mezgár, I.: Model similarity evidence and interoperability affinity in cloud-ready Industry 4.0 technologies. Comput. Ind. 100, 278–286 (2018)Google Scholar
  9. 9.
    Fuchs, A.: Industrial Trucks in the Age of Industry 4.0. ATZoffhighway Worldw. 9, 3–3 (2016)Google Scholar
  10. 10.
    Ahuett-Garza, H., Kurfess, T.: A brief discussion on the trends of habilitating technologies for Industry 4.0 and smart manufacturing. Manuf. Lett. 15, 60–63 (2018)Google Scholar
  11. 11.
    Reischauer, G.: Industry 4.0 as policy-driven discourse to institutionalize innovation systems in manufacturing. Technol. Forecast. Soc. Change. 132, 26–33 (2018)Google Scholar
  12. 12.
    Featherstone, S.: 13—Computer-integrated manufacturing. In: Featherstone, S. (ed.) A Complete Course in Canning and Related Processes (Fourteenth Edition). pp. 269–275. Woodhead Publishing (2015)Google Scholar
  13. 13.
    Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Cyber-physical systems and their security issues. Comput. Ind. 100, 212–223 (2018)CrossRefGoogle Scholar
  14. 14.
    Radziwon, A., Bilberg, A., Bogers, M., Madsen, E.S.: The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia Eng. 69, 1184–1190 (2014)CrossRefGoogle Scholar
  15. 15.
    . Oussous, A., Benjelloun, F.-Z., Ait Lahcen, A., Belfkih, S.: Big Data technologies: A survey. J. King Saud Univ. Comput. Inf. Sci. (2017Google Scholar
  16. 16.
    Chen, M., Mao, S., Zhang, Y., Leung, V.C.M.: Introduction. In: Big Data. pp. 1–10. Springer, Cham (2014)Google Scholar
  17. 17.
    Anshari, M., Almunawar, M.N., Lim, S.A., Al-Mudimigh, A.: Customer relationship management and big data enabled: personalization and customization of services. Appl. Comput. Inform. (2018)Google Scholar
  18. 18.
    Caesarius, L.M., Hohenthal, J.: Searching for big data: how incumbents explore a possible adoption of big data technologies. Scand. J. Manag. 34, 129–140 (2018)CrossRefGoogle Scholar
  19. 19.
    Nimmagadda, S.L., Reiners, T., Wood, L.C.: On big data-guided upstream business research and its knowledge management. J. Bus. Res. 89, 143–158 (2018)CrossRefGoogle Scholar
  20. 20.
    Benghozi, P.-J., Bureau, S., Massit-Folléa, F.: Définir l’internet des objets. In: L’Internet des objets : Quels enjeux pour l’Europe. pp. 15–23. Éditions de la Maison des sciences de l’homme, Paris (2012)Google Scholar
  21. 21.
    Lanotte, R., Merro, M.: A semantic theory of the internet of things. Inf. Comput. 259, 72–101 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kouicem, D.E., Bouabdallah, A., Lakhlef, H.: Internet of things security: a top-down survey. Comput. Netw. 141, 199–221 (2018)CrossRefGoogle Scholar
  23. 23.
    Standardization, I.O.: for: ISO 9001:2015, Fifth Edition: Quality management systems—Requirements. Multiple, Distributed through American National Standards Institute (2015)Google Scholar
  24. 24.
    Manders, B., de Vries, H.J., Blind, K.: ISO 9001 and product innovation: a literature review and research framework. Technovation. 48–49, 41–55 (2016)CrossRefGoogle Scholar
  25. 25.
    Natarajan, D.: ISO 9001 Quality management systems. Springer International Publishing (2017)Google Scholar
  26. 26.
    Van den Broeke, M.M., Boute, R.N., Van Mieghem, J.A.: Platform flexibility strategies: R&D investment versus production customization tradeoff. Eur. J. Oper. Res. 270, 475–486 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Denkena, B., Krüger, M., Schmidt, J.: Condition-based tool management for small batch production. Int. J. Adv. Manuf. Technol. 74, 471–480 (2014)CrossRefGoogle Scholar
  28. 28.
    Liu, C., Wang, H., Fu, X., Xie, D.: Research on Quality Control under Small Batch Production Condition. In: 2010 International Conference on Measuring Technology and Mechatronics Automation. pp. 147–150 (2010)Google Scholar
  29. 29.
    Kamble, S.S., Gunasekaran, A., Gawankar, S.A.: Sustainable Industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. Process Saf. Environ. Prot. 117, 408–425 (2018)Google Scholar
  30. 30.
    Telukdarie, A., Buhulaiga, E.A., Bag, S., Gupta, S., Luo, Z.: Industry 4.0 implementation for multinationals. Process Saf. Environ. Prot. (2018)Google Scholar
  31. 31.
    Gifford, C.: The MOM Chronicles ISA-95 Best Practice Book 3.0. International Society of Automation, Research Triangle Park, NC (2013)Google Scholar
  32. 32.
    Meissner, H., Ilsen, R., Aurich, J.C.: Analysis of control architectures in the context of Industry 4.0. Procedia CIRP. 62, 165–169 (2017)Google Scholar
  33. 33.
    Godina, R., Matias, J.C.O.: Improvement of the statistical process control through an enhanced test of normality. In: 2018 7th International Conference on Industrial Technology and Management (ICITM). pp. 17–21 (2018)Google Scholar
  34. 34.
    Li, P., Jiang, P.: Research on quality-oriented outsourcing decision architecture for small-batch parts of multistage machining processes. In: Proceedings of the 22nd International Conference on Industrial Engineering and Engineering Management 2015. pp. 427–433. Atlantis Press, Paris (2016)Google Scholar
  35. 35.
    Mayr, A., Weigelt, M., Kühl, A., Grimm, S., Erll, A., Potzel, M., Franke, J.: Lean 4.0-A conceptual conjunction of lean management and Industry 4.0. Procedia CIRP. 72, 622–628 (2018)Google Scholar
  36. 36.
    Vaidya, S., Ambad, P., Bhosle, S.: Industry 4.0—a glimpse. Procedia Manuf. 20, 233–238 (2018)Google Scholar
  37. 37.
    Merino, J., Caballero, I., Rivas, B., Serrano, M., Piattini, M.: A data quality in use model for Big Data. Future Gener. Comput. Syst. 63, 123–130 (2016)CrossRefGoogle Scholar
  38. 38.
    Sung, T.K.: Industry 4.0: A Korea perspective. Technol. Forecast. Soc. Change. 132, 40–45 (2018)Google Scholar
  39. 39.
    Bagheri, B., Yang, S., Kao, H.-A., Lee, J.: Cyber-physical systems architecture for self-aware machines in Industry 4.0 Environment. IFAC-Pap. 48, 1622–1627 (2015)Google Scholar
  40. 40.
    Simons, S., Abé, P., Neser, S.: Learning in the AutFab—The Fully Automated Industrie 4.0 Learning factory of the University of Applied Sciences Darmstadt. Procedia Manuf. 9, 81–88 (2017)Google Scholar
  41. 41.
    Schuh, G., Potente, T., Wesch-Potente, C., Weber, A.R., Prote, J.-P.: Collaboration Mechanisms to Increase Productivity in the Context of Industrie 4.0. Procedia CIRP. 19, 51–56 (2014)Google Scholar
  42. 42.
    Sittón, I., Rodríguez, S.: Pattern extraction for the design of predictive models in Industry 4.0. In: Trends in Cyber-Physical Multi-Agent Systems. The PAAMS Collection—15th International Conference, PAAMS 2017. pp. 258–261. Springer, Cham (2017)Google Scholar
  43. 43.
    Gewohn, M., Beyerer, J., Usländer, T., Sutschet, G.: A quality visualization model for the evaluation and control of quality in vehicle assembly. In: 2018 7th International Conference on Industrial Technology and Management (ICITM). pp. 1–10 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research and Development Unit in Mechanical and Industrial Engineering (UNIDEMI)Department of Mechanical and Industrial Engineering, Faculty of Science and Technology (FCT), Universidade NOVA de LisboaCaparicaPortugal
  2. 2.DEGEITUniversity of AveiroAveiroPortugal
  3. 3.GOVCOPPUniversity of AveiroAveiroPortugal

Personalised recommendations