Advertisement

Environmental, Economic, and Social Impact of Industrial Symbiosis: Methods and Indicators Review

  • Angela Neves
  • Radu Godina
  • Susana G. Azevedo
  • João C. O. MatiasEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 281)

Abstract

Industrial symbiosis is an important approach to achieve sustainability and to reduce significantly wastes. It is, therefore, imperative to evaluate and quantify the real impact of industrial symbiosis in order to provide more synergies between companies and more policies to encourage this practice. This article aims to present a literature review about the methods and indicators used to assess the impact of industrial symbiosis in environmental, economic, and social context. The advantages and limitations of each of them are also listed. This review addresses the economic and environmental aspects are the most studied, all methods and indicators that have been developed, and the advantages that come from industrial symbiosis.

Keywords

Industrial symbiosis Industrial symbiosis method Industrial symbiosis indicator 

Notes

Acknowledgements

This work was financially supported by the research unit on Governance, Competitiveness and Public Policy (project POCI-01-0145-FEDER-006939), funded by FEDER funds through COMPETE2020—POCI and by national funds through FCT—Fundação para a Ciência e a Tecnologia. Radu Godina would like to acknowledge financial support from Fundação para a Ciência e Tecnologia (UID/EMS/00667/2019).

References

  1. 1.
    IPCC: Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland. Homepage. http://www.ipcc.ch. Last accessed 1 Mar 2018
  2. 2.
    Zhang, Y., Zheng, H., Chen, B., Su, M., Liu, G.: A review of industrial symbiosis research: theory and methodology. Front. Earth Sci. 9, 91–104 (2014)CrossRefGoogle Scholar
  3. 3.
    Chertow, M., Ehrenfeld, J.: Organizing self-organizing systems: toward a theory of industrial symbiosis. J. Ind. Ecol. 16, 13–27 (2012)CrossRefGoogle Scholar
  4. 4.
    Herczeg, G., Akkerman, R., Hauschild, M.Z.: Supply chain collaboration in industrial symbiosis networks. J. Clean. Prod. 171, 1058–1067 (2018)CrossRefGoogle Scholar
  5. 5.
    Jiao, W., Boons, F.: Toward a research agenda for policy intervention and facilitation to enhance industrial symbiosis based on a comprehensive literature review. J. Clean. Prod. 67, 14–25 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhe, L., et al.: An emergy-based hybrid method for assessing industrial symbiosis of an industrial park. J. Clean. Prod. 114, 132–140 (2016)CrossRefGoogle Scholar
  7. 7.
    Ohnishi, S., Dong, H., Geng, Y., Fujii, M., Fujita, T.: A comprehensive evaluation on industrial & urban symbiosis by combining MFA, carbon footprint and emergy methods—case of Kawasaki, Japan. Ecol. Indic. 73, 315–324 (2017)CrossRefGoogle Scholar
  8. 8.
    Daddi, T., Nucci, B., Iraldo, F.: Using life cycle assessment (LCA) to measure the environmental benefits of industrial symbiosis in an industrial cluster of SMEs. J. Clean. Prod. 147, 157–164 (2017)CrossRefGoogle Scholar
  9. 9.
    Trokanas, N., Cecelja, F., Raafat, T.: Semantic approach for pre-assessment of environmental indicators in industrial symbiosis. J. Clean. Prod. 96, 349–361 (2015)CrossRefGoogle Scholar
  10. 10.
    Felicio, M., Amaral, D., Esposto, K., Gabarrell Durany, X.: Industrial symbiosis indicators to manage eco-industrial parks as dynamic systems. J. Clean. Prod. 118, 54–64 (2016)CrossRefGoogle Scholar
  11. 11.
    Valenzuela-Venegas, G., et al.: A resilience indicator for eco-industrial parks. J. Clean. Prod. 174, 807–820 (2018)CrossRefGoogle Scholar
  12. 12.
    Yang, W., Wang, S., Chen, B.: Embodied carbon emission analysis of eco-industrial park based on input-output analysis and ecological network analysis. Energy Procedia 142, 3102–3107 (2017)CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Zheng, H., Fath, B.D.: Ecological network analysis of an industrial symbiosis system: a case study of the Shandong Lubei eco-industrial park. Ecol. Modell. 306, 174–184 (2015)CrossRefGoogle Scholar
  14. 14.
    Martin, M., Svensson, N., Eklund, M.: Who gets the benefits? An approach for assessing the environmental performance of industrial symbiosis. J. Clean. Prod. 98, 263–271 (2015)CrossRefGoogle Scholar
  15. 15.
    Singh, A., Lou, H.H., Yaws, C.L., Hopper, J.R., Pike, R.W.: Environmental impact assessment of different design schemes of an industrial ecosystem. Resour. Conserv. Recycl. 51, 294–313 (2007)CrossRefGoogle Scholar
  16. 16.
    Sharib, S., Halog, A.: Enhancing value chains by applying industrial symbiosis concept to the Rubber City in Kedah, Malaysia. J. Clean. Prod. 141, 1095–1108 (2017)CrossRefGoogle Scholar
  17. 17.
    Wu, J., Wang, R., Pu, G., Qi, H.: Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network. Appl. Energy 183, 430–444 (2016)CrossRefGoogle Scholar
  18. 18.
    Ohnishi, S., Fujita, T., Chen, X., Fujii, M.: Econometric analysis of the performance of recycling projects in Japanese Eco-Towns. J. Clean. Prod. 33, 217–225 (2012)CrossRefGoogle Scholar
  19. 19.
    Song, X., Geng, Y., Dong, H., Chen, W.: Social network analysis on industrial symbiosis: a case of Gujiao eco-industrial park. J. Clean. Prod. 193, 414–423 (2018)CrossRefGoogle Scholar
  20. 20.
    Fan, Y., Qiao, Q., Xian, C., Xiao, Y., Fang, L.: A modified ecological footprint method to evaluate environmental impacts of industrial parks. Resour. Conserv. Recycl. 125, 293–299 (2017)CrossRefGoogle Scholar
  21. 21.
    Brondi, C., et al.: Sustainability-based optimization criteria for industrial symbiosis: the Symbioptima case. Procedia CIRP 69, 855–860 (2018)CrossRefGoogle Scholar
  22. 22.
    Wen, Z., Meng, X.: Quantitative assessment of industrial symbiosis for the promotion of circular economy: a case study of the printed circuit boards industry in China’s Suzhou New District. J. Clean. Prod. 90, 211–219 (2015)CrossRefGoogle Scholar
  23. 23.
    Valenzuela-Venegas, G., Salgado, J.C., Díaz-Alvarado, F.A.: Sustainability indicators for the assessment of eco-industrial parks: classification and criteria for selection. J. Clean. Prod. 133, 99–116 (2016)CrossRefGoogle Scholar
  24. 24.
    Mantese, G.C., Amaral, D.C.: Agent-based simulation to evaluate and categorize industrial symbiosis indicators. J. Clean. Prod. 186, 450–464 (2018)CrossRefGoogle Scholar
  25. 25.
    International Organization for Standardization: ISO 14040, Environmental management—Life cycle assessment—Principles and framework (2006)Google Scholar
  26. 26.
    Bjorn, A., Owsianiak, M., Molin, C., Hauschild, M.Z.: LCA history. In: Hauschild, M., Rosenbaum, R., Olsen, S. (eds.) Life Cycle Assessment, pp. 17–30. Springer, Cham (2018)Google Scholar
  27. 27.
    Zhang, Y., et al.: Life cycle assessment of industrial symbiosis in Songmudao chemical industrial park, Dalian, China. J. Clean. Prod. 158, 192–199 (2017)CrossRefGoogle Scholar
  28. 28.
    Ammenberg, J., et al.: Improving the CO2 performance of cement, part III: the relevance of industrial symbiosis and how to measure its impact. J. Clean. Prod. 98, 145–155 (2015)CrossRefGoogle Scholar
  29. 29.
    Hashimoto, S., Fujita, T., Geng, Y., Nagasawa, E.: Realizing CO2 emission reduction through industrial symbiosis: a cement production case study for Kawasaki. Resour. Conserv. Recycl. 54, 704–710 (2010)CrossRefGoogle Scholar
  30. 30.
    Sokka, L., Lehtoranta, S., Nissinen, A., Melanen, M.: Analyzing the environmental benefits of industrial symbiosis: life cycle assessment applied to a Finnish forest industry complex. J. Ind. Ecol. 15, 137–155 (2011)CrossRefGoogle Scholar
  31. 31.
    Yu, F., Han, F., Cui, Z.: Assessment of life cycle environmental benefits of an industrial symbiosis cluster in China. Environ. Sci. Pollut. Res. 22, 5511–5518 (2015)CrossRefGoogle Scholar
  32. 32.
    International Organisation for Standardization: ISO 14044, Environmental management—Life cycle assessment—Requirements and guidelines (2006)Google Scholar
  33. 33.
    Eckelman, M.J., Chertow, M.R.: Life cycle energy and environmental benefits of a US industrial symbiosis. Int. J. Life Cycle Assess. 18, 1524–1532 (2013)CrossRefGoogle Scholar
  34. 34.
    Mohammed, F., Biswas, W.K., Yao, H., Tadé, M.: Identification of an environmentally friendly symbiotic process for the reuse of industrial byproduct—an LCA perspective. J. Clean. Prod. 112, 3376–3387 (2016)CrossRefGoogle Scholar
  35. 35.
    Liu, Q., et al.: Life cycle assessment of an industrial symbiosis based on energy recovery from dried sludge and used oil. J. Clean. Prod. 19, 1700–1708 (2011)CrossRefGoogle Scholar
  36. 36.
    Kim, H.W., Ohnishi, S., Fujii, M., Fujita, T., Park, H.S.: Evaluation and allocation of greenhouse gas reductions in industrial symbiosis. J. Ind. Ecol. 22, 275–287 (2018)CrossRefGoogle Scholar
  37. 37.
    Ehrenfeld, J.: Industrial ecology: a new field or only a metaphor? J. Clean. Prod. 12, 825–831 (2004)CrossRefGoogle Scholar
  38. 38.
    Brunner, P.H., Rechberger, H.: Practical Handbook of Material Flow Analysis, vol. 9 (2004)Google Scholar
  39. 39.
    Sendra, C., Gabarrell, X., Vicent, T.: Material flow analysis adapted to an industrial area. J. Clean. Prod. 15, 1706–1715 (2007)CrossRefGoogle Scholar
  40. 40.
    Sun, L., et al.: Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: a case of Liuzhou city, China. Resour. Conserv. Recycl. 119, 78–88 (2017)CrossRefGoogle Scholar
  41. 41.
    Winans, K., Kendall, A., Deng, H.: The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 68, 825–833 (2017)CrossRefGoogle Scholar
  42. 42.
    Fischer-Kowalski, M., et al.: Methodology and indicators of economy-wide material flow accounting: state of the art and reliability across sources. J. Ind. Ecol. 15, 855–876 (2011)CrossRefGoogle Scholar
  43. 43.
    Odum, H.T.: Environmental Accounting: Emergy and Environmental Decision Making. Wiley (1995)Google Scholar
  44. 44.
    Fan, Y., Qiao, Q., Fang, L., Yao, Y.: Emergy analysis on industrial symbiosis of an industrial park—a case study of Hefei economic and technological development area. J. Clean. Prod. 141, 791–798 (2017)CrossRefGoogle Scholar
  45. 45.
    Geng, Y., et al.: Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone. Environ. Sci. Pollut. Res. 21, 13572–13587 (2014)CrossRefGoogle Scholar
  46. 46.
    Taskhiri, M.S., Tan, R.R., Chiu, A.S.F.: Emergy-based fuzzy optimization approach for water reuse in an eco-industrial park. Resour. Conserv. Recycl. 55, 730–737 (2011)CrossRefGoogle Scholar
  47. 47.
    Sun, L., et al.: Uncovering driving forces on urban metabolism—a case of Shenyang. J. Clean. Prod. 114, 171–179 (2016)CrossRefGoogle Scholar
  48. 48.
    Wang, L., Zhang, J., Ni, W.: Emergy evaluation of eco-industrial park with power plant. Ecol. Modell. 189, 233–240 (2005)CrossRefGoogle Scholar
  49. 49.
    Yang, H., Li, Y., Shen, J., Hu, S.: Evaluating waste treatment, recycle and reuse in industrial system: an application of the emergy approach. Ecol. Modell. 160, 13–21 (2003)CrossRefGoogle Scholar
  50. 50.
    Ren, J., Liang, H., Dong, L., Sun, L., Gao, Z.: Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization. Sci. Total Environ. 562, 789–801 (2016)CrossRefGoogle Scholar
  51. 51.
    Dong, H., Liu, Z., Geng, Y., Fujita, T., Fujii, M., Sun, L., Zhang, L.: Evaluating environmental performance of industrial park development: the case of Shenyang. J. Ind. Ecol. 22(6), 1402–1412 (2018)Google Scholar
  52. 52.
    Giannetti, B.F., Bonilla, S.H., Silva, I.R., Almeida, C.M.V.B.: Cleaner production practices in a medium size gold-plated jewelry company in Brazil: when little changes make the difference. J. Clean. Prod. 16, 1106–1117 (2008)CrossRefGoogle Scholar
  53. 53.
    Ometto, A.R., Ramos, P.A.R., Lombardi, G.: The benefits of a Brazilian agro-industrial symbiosis system and the strategies to make it happen. J. Clean. Prod. 15, 1253–1258 (2007)CrossRefGoogle Scholar
  54. 54.
    Geng, Y., Zhang, P., Ulgiati, S., Sarkis, J.: Emergy analysis of an industrial park: the case of Dalian, China. Sci. Total Environ. 408, 5273–5283 (2010)CrossRefGoogle Scholar
  55. 55.
    Ulgiati, S., Bargigli, S., Raugei, M.: An emergy evaluation of complexity, information and technology, towards maximum power and zero emissions. J. Clean. Prod. 15, 1359–1372 (2007)CrossRefGoogle Scholar
  56. 56.
    Song, Q., Wang, Z., Li, J.: Sustainability evaluation of e-waste treatment based on emergy analysis and the LCA method: a case study of a trial project in Macau. Ecol. Indic. 30, 138–147 (2013)CrossRefGoogle Scholar
  57. 57.
    Brown, M.T., Buranakarn, V.: Emergy indices and ratios for sustainable material cycles and recycle options. Resour. Conserv. Recycl. 38, 1–22 (2003)CrossRefGoogle Scholar
  58. 58.
    Navarrete-Gutiérrez, T., Rugani, B., Pigné, Y., Marvuglia, A., Benetto, E.: On the complexity of life cycle inventory networks: role of life cycle processes with network analysis. J. Ind. Ecol. 20, 1094–1107 (2016)CrossRefGoogle Scholar
  59. 59.
    Mattila, T., Lehtoranta, S., Sokka, L., Melanen, M., Nissinen, A.: Methodological aspects of applying life cycle assessment to industrial symbioses. J. Ind. Ecol. 16, 51–60 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Angela Neves
    • 1
    • 2
  • Radu Godina
    • 3
  • Susana G. Azevedo
    • 2
    • 4
  • João C. O. Matias
    • 5
    Email author
  1. 1.Department of Mechanical EngineeringPolytechnic Institute of ViseuViseuPortugal
  2. 2.University of Beira InteriorCovilhãPortugal
  3. 3.Research and Development Unit in Mechanical and Industrial Engineering (UNIDEMI), Department of Mechanical and Industrial Engineering, Faculty of Science and Technology (FCT)Universidade NOVA de LisboaCaparicaPortugal
  4. 4.CEFAGE - Department of Business and EconomicsUniversity of Beira InteriorCovilhãPortugal
  5. 5.GOVCOPP and DEGEIT, University of AveiroAveiroPortugal

Personalised recommendations