Uranium and Plants: Elemental Translocation and Phytoremediation Approaches

  • Dharmendra K. Gupta
  • Soumya Chatterjee
  • Anindita Mitra
  • Anna Voronina
  • Clemens Walther
Part of the Radionuclides and Heavy Metals in the Environment book series (RHME)


Uranium (U) is a ubiquitous element in nature, and 238U is the most abundant radioactive isotope of uranium. Because of the use of U for military purposes in the past and increasing use of nuclear power during the last decades, U contamination in the environment, mainly as a consequence of mining, plays an increasing role. But also NORM (naturally occurring radioactive matter) industries release uranium and its progenies into the environment. Plants naturally incorporate U into their body via root uptake, where different factors play important roles and some plants are more efficient than other. This fact is made use of for plant-based remediation of contaminated sites. Selection of suitable plants that can uptake high amount of the element without affecting their growth is very important. This review deals with uranium translocation in plants with a potential for phytoremediation practices.


Uranium Uptake Plants Rhizosphere Hyperaccumulator AMF Metal transporters Radionuclide 



S.C. sincerely acknowledges and thanks Director, DRL (DRDO), Assam, India.


  1. Acharya C (2015) Microbial bioremediation of uranium: an overview. BARC Newslett. March–April: 27–30 (Online:
  2. Acharya C, Apte SK (2013) Novel surface associated polyphosphate bodies sequester uranium in the filamentous, marine cyanobacterium, Anabaena torulosa. Metallomics 5:1595–1598CrossRefGoogle Scholar
  3. Acharya C, Joseph D, Apte SK (2009) Uranium sequestration by a marine cyanobacterium, Synechococcus elongatus strain BDU/7504. Bioresour Technol 100:2176–2181CrossRefGoogle Scholar
  4. Acharya C, Chandwadkar P, Apte SK (2012) Interaction of uranium with a filamentous, heterocystous, nitrogen-fixing cyanobacterium, Anabaena torulosa. Bioresour Technol 116:290–294CrossRefGoogle Scholar
  5. Amarillo National Resource Centre for Plutonium (ANRCP) (1998) Phytoaccumulation of chromium, uranium, and plutonium in plant systems (Online:
  6. Anderson TA, Kruger EL, Coats JR (1994) Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant. Chemosphere 28:1551–1557CrossRefGoogle Scholar
  7. Baumann N, Arnold T, Haferburg G (2014) Uranium contents in plants and mushrooms grown on a uranium-contaminated site near Ronneburg in Eastern Thuringia/Germany. Environ Sci Pollut Res 21:6921–6929CrossRefGoogle Scholar
  8. Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2007) Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environ Sci Technol 41:5701–5707CrossRefGoogle Scholar
  9. Berlin M, Rudell B (1986) Uranium. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals, 2nd edn. Elsevier Science Publishers, Amsterdam, pp 623–637Google Scholar
  10. Boghi A, Roose T, Kirk GJD (2018) A model of Uranium uptake by plant roots allowing for root-induced changes in the soil. Environ Sci Technol 52:3536–3545CrossRefGoogle Scholar
  11. Bryan ND, Abrahamsen L, Evans N, Warwick P, Buckau G, Weng L, Van Riemsdijk WH (2012) The effects of humic substances on the transport of radionuclides: recent improvements in the prediction of behaviour and the understanding of mechanisms. Appl Geochem 27:378–389CrossRefGoogle Scholar
  12. Bunzl K, Kretner R, Schramel P, Szeles M, Winkler R (1995) Speciation of 238U, 226Ra, 210Pb, 228Ra, and Stable Pb in the soil near an exhaust ventilating shaft of a uranium mine. Geoderma 67:45–53CrossRefGoogle Scholar
  13. Charro E, Moyano A (2017) Soil and vegetation influence in plants natural radionuclides uptake at a uranium mining site. Rad Phys Chem 141:200–206CrossRefGoogle Scholar
  14. Chatterjee S, Singh L, Chattopadhyay B, Datta S, Mukhopadhyay SK (2012) A study on the waste metal remediation using floriculture at East Calcutta Wetlands, a Ramsar site in India. Environ Monit Assess 184:5139–5150CrossRefGoogle Scholar
  15. Chatterjee S, Mitra A, Datta S, Veer V (2013) Phytoremediation protocols: an overview. In: Gupta DK (ed) Plant Based Remediation Processes. Springer, Heidelberg, pp 1–18Google Scholar
  16. Chen B, Roos P, Zhu YG, Jakobsen I (2008) Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings. J Environ Radioact 99:801–810CrossRefGoogle Scholar
  17. Coyte RM, Jain RC, Srivastava SK, Sharma KC, Khalil A, Ma L, Vengosh A (2018) Large-scale uranium contamination of groundwater resources in India. Environ Sci Technol Lett 5:341–347CrossRefGoogle Scholar
  18. Cumberland SA, Douglas G, Grice K, Moreau JW (2016) Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes. Earth Sci Rev 159:160–185CrossRefGoogle Scholar
  19. Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:1–5CrossRefGoogle Scholar
  20. Davies FT Jr, Puryear JD, Newton RJ (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786CrossRefGoogle Scholar
  21. Davies HS, Cox F, Robinson CH, Pittman JK (2015) Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation. Front Plant Sci 6:580CrossRefGoogle Scholar
  22. Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modeling of Uranium (VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68:3621–3641CrossRefGoogle Scholar
  23. De Boulois HD, Joner EJ, Leyval C, Jakobsen I, Chen BD, Roos P, Thiry Y, Rufykiri G, Declerck S (2008) Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants. J Environ Radioact 99:775–784CrossRefGoogle Scholar
  24. Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, FL, pp 177–204Google Scholar
  25. Duff MC, Amrhein C (1996) Uranium(VI) adsorption on goethite and soil in soil carbonate solutions. Soil Sci Soc Am J 60:1393–1400CrossRefGoogle Scholar
  26. Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474CrossRefGoogle Scholar
  27. Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. J Exp Bot 49:1183–1190CrossRefGoogle Scholar
  28. Entry JA, Vance NC, Hamilton MA, Zabowski D, Watrud LS, Adriano DC (1996) Phytoremediation of soil contaminated with low concentrations of radionuclides. Water Air Soil Pollut 88:167–176Google Scholar
  29. Favas PJC, Pratas J (2013) Uptake of uranium by native aquatic plants: potential for bio indication and phytoremediation. E3S Web of Conferences1.13007. doi: 10.1051/e3sconf/20130113007 (Online: or
  30. Favas PJC, Prates J, Mitra S, Sarkar SK, Venkatachalam P (2016) Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Sci Total Environ 568:350–368CrossRefGoogle Scholar
  31. Gadd GM, Fomina M (2011) Uranium and fungi. Geomicrobiol J 28:471–482CrossRefGoogle Scholar
  32. Greipsson S (2011) Phytoremediation. Nature Education Knowledge 3:7Google Scholar
  33. Grenthe I, Fuger J, Konings R, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner J (1992) The chemical thermodynamics of uranium. Elsevier, New YorkGoogle Scholar
  34. Gulati KL, Oswal MC, Nagpaul KK (1980) Assimilation of uranium by wheat and tomato plants. Plant Soil 55:55–59CrossRefGoogle Scholar
  35. Gupta DK (2013) Plant Based Remediation Process. Springer, HeidelbergGoogle Scholar
  36. Gupta DK, Voronina A (2018) Remediation measures for radioactively contaminated areas. Springer, ChamGoogle Scholar
  37. Gupta DK, Walther C (2014) Radionuclide contamination and remediation through plants. Springer, ChamCrossRefGoogle Scholar
  38. Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161CrossRefGoogle Scholar
  39. Gupta DK, Chatterjee S, Datta S, Voronina AV, Walther C (2016a) Radionuclides: accumulation and transport in plants. Rev Environ Contam Toxicol 241:139–160Google Scholar
  40. Gupta DK, Tawussi F, Hamann L, Walther C (2016b) Moderate uranium disturbs the nutritional status and induces oxidative stress in Pisum sativum L. J Plant Physiol Pathol 4:1Google Scholar
  41. Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11CrossRefGoogle Scholar
  42. Huang JW, Blaylock MJ, Kapulnik YK, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008CrossRefGoogle Scholar
  43. Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM (2012) Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol 158:1779–1788Google Scholar
  44. Kumar R, Nongkhlaw M, Acharya C, Joshi SR (2013a) Uranium (U) tolerant bacterial diversity from U ore deposit of Domiasiat in North-East India and its prospective utilisation in bioremediation. Microb Environ 28:33–41CrossRefGoogle Scholar
  45. Kumar R, Nongkhlaw M, Acharya C, Joshi SR (2013b) Bacterial community structure from the perspective of the uranium ore deposits of Domiasiat in India. Proc Natl Acad Sci India Sect B Biol Sci 83:485–497CrossRefGoogle Scholar
  46. Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272Google Scholar
  47. LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520CrossRefGoogle Scholar
  48. Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium-contaminated groundwater. J Hazard Mater 173:589–596CrossRefGoogle Scholar
  49. Lloyd NS, Chenery SR, Parrish RR (2009) The distribution of depleted uranium contamination in Colonie, NY, USA. Sci Total Environ 408:397–407CrossRefGoogle Scholar
  50. Lozano JC, Rodríguez PB, Tomé FV, Calvo CP (2011) Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments. J Hazard Mater 198:224–231CrossRefGoogle Scholar
  51. Malaviya P, Singh A (2012) Phytoremediation strategies for remediation of uranium-contaminated environments: a review. Crit Rev Environ Sci Technol 42:2575–2647CrossRefGoogle Scholar
  52. Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer briefs in biometals. Springer, New York, pp 27–53CrossRefGoogle Scholar
  53. Meinrath G, Kato Y, Kimura T, Yoshida Z (1996) Solid-aqueous phase equilibria of uranium(VI) under ambient conditions. Radiochemica Acta 75:159–167Google Scholar
  54. Mitchell N, Pérez-Sánchez D, Thorne MC (2013) A review of the behaviour of U-238 series radionuclides in soils and plants. J Radiol Prot 33:R17–R48CrossRefGoogle Scholar
  55. Mkandawire M, Taubert B, Dudel E (2004) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytorem 6:347–362CrossRefGoogle Scholar
  56. Newsome L, Morris K, Lloyd J (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184CrossRefGoogle Scholar
  57. Nolan J, Weber KA (2015) Natural uranium contamination in major U.S. aquifers linked to nitrate. Environ Sci Technol 2:215–220CrossRefGoogle Scholar
  58. Nuclear Energy Agency (NEA) 2016 Uranium 2016: Resources, Production and Demand (Online:
  59. Pinney SM, Freyberg RW, Levine GH, Brannen DE, Mark LS, Nasuta JM, Tebbe CD, Buckholz JM, Wones R (2003) Health effects in community residents near a uranium plant at Ferland, Ohio, USA. Intl J Occup Med Environ Health 16:139–153Google Scholar
  60. Prasad MNV (2011) A state-of-the-art report on bioremediation, its applications to contaminated sites in India. Ministry of Environment & Forests, Government of India (Online:
  61. Pratas J, Fava PJC, Paulo C, Rodrigues N, Prasad MNV (2012) Uranium accumulation by aquatic plants from uranium-contaminated water in central Portugal. Int J Phytorem 14:221–234CrossRefGoogle Scholar
  62. Rai UN, Pal A (1999) Toxic metals and phytoremediation. Enviro News, Newsletter of International Society of Environmental Botanists, India, vol 5:4Google Scholar
  63. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, NATO Science series IV: Earth and Environmental Sciences. Springer, New York, pp 25–52CrossRefGoogle Scholar
  64. Rufyikiri G, Thiry Y, Wang L, Delvaux B, Declerck S (2002) Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditions. New Phytol 156:275–281CrossRefGoogle Scholar
  65. Rufyikiri G, Declerck S, Thiry Y (2004) Comparison of 233U and 33P uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices in root organ culture conditions. Mycorrhiza 14:203–207CrossRefGoogle Scholar
  66. Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, Van Hees M, Wannijn J, Vangronsveld J, Cuypers A (2015) Oxidative stress responses induced by uranium exposure at low pH in leaves of Arabidopsis thaliana plants. J Environ Radioact 150:36–43CrossRefGoogle Scholar
  67. Shaker-Koohi S (2014) Role of arbuscular mycorrhizal (AM) fungi in phytoremediation of soils contaminated: a review. Int J Adv Biol Biomed Res 2:1854–1864Google Scholar
  68. Sheppard MI, Thibault DH (1992) Desorption and extraction of selected heavy metals from soils. Soil Sci Soc Am J 56:415–423CrossRefGoogle Scholar
  69. Sheppard SC, Evenden WG, Anderson AJ (1992) Multiple assays of uranium in soil. Environ Toxicol Wat Qual 7:275–294CrossRefGoogle Scholar
  70. Shtangeeva I, Lin X, Tuerler A, Rudneva E, Surin V, Henkelmann R (2006) Thorium and uranium uptake and bioaccumulation by wheat-grass and plantain. For Snow Land Res 2:181–190Google Scholar
  71. Stojanović MD, Mihajlović ML, Milojković JV, Lopičić ZR, Adamović M, Stankovic S (2012) Efficient phytoremediation of uranium mine tailings by tobacco. Environ Chem Lett 10:377–381CrossRefGoogle Scholar
  72. Tang S, Willey NJ (2003) Uptake of 134Cs by four species from the Asteraceae and two varieties from the Chenopodiaceae grown in two types of Chinese soil. Plant Soil 250:75–81CrossRefGoogle Scholar
  73. Tasat DR, Orona NS, Bozal C, Ubios AM, Cabrini RL (2012) Intracellular metabolism of uranium and the effects of bisphosphonates on its toxicity. doi: 10.5772/29245 (Online:
  74. Tawussi F, Walther C, Gupta DK (2017) Does low uranium concentration generates phytotoxic symptoms in Pisum sativum L. in nutrient medium? Environ Sci Pollut Res 24:22741–22751CrossRefGoogle Scholar
  75. Tomé FV, Rodríguez BP, Lozano JC (2008) Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:351–357CrossRefGoogle Scholar
  76. UNSCEAR (2010) Sources and effects of ionizing radiation, UNSCEAR 2008. In: Report to the general assembly with scientific annexes, vol 1 (Online:
  77. Walther C, Gupta DK (2015) Radionuclides in the environment: influence of chemical speciation and plant uptake on radionuclide migration. Springer, ChamCrossRefGoogle Scholar
  78. WHO (2012) Uranium in drinking-water: guidelines for drinking-water quality (online:, on 24-9-2018)
  79. World Nuclear Association (WNA) (2017) The nuclear fuel report 2017 (Online:
  80. Yue YC, Li MH, Wang HB, Zhang BL, He W (2018) The toxicological mechanisms and detoxification of depleted uranium exposure. Environ Health Prevent Med 23:18CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dharmendra K. Gupta
    • 1
  • Soumya Chatterjee
    • 2
  • Anindita Mitra
    • 3
  • Anna Voronina
    • 4
  • Clemens Walther
    • 1
  1. 1.Gottfried Wilhelm Leibniz Universität HannoverInstitut für Radioökologie und Strahlenschutz (IRS)HannoverGermany
  2. 2.Defence Research Laboratory, DRDOTezpurIndia
  3. 3.Department of ZoologyBankura Christian CollegeBankuraIndia
  4. 4.Radiochemistry and Applied Ecology DepartmentPhysical Technology Institute, Ural Federal UniversityEkaterinburgRussia

Personalised recommendations