Advertisement

Biogeochemistry of Uranium in Tropical Environments

  • Juliana A. Galhardi
  • Daniel M. Bonotto
  • Carlos E. Eismann
  • Ygor Jacques A. B. Da Silva
Chapter
Part of the Radionuclides and Heavy Metals in the Environment book series (RHME)

Abstract

Uranium evaluation in areas affected by industrial, mining, and agricultural activities is important for the assessment of the human exposure to the natural radioactivity. Besides the occurrence of U isotopes in soils, rocks, and sediments being natural, anthropogenic activities contribute to increase this dose. Food and water ingestion is one of the main sources of U exposure to the population. Although the main U carrier is water, dust and atmospheric particulate matter also act as alternative routes to this radioelement dispersion. In soils, U mobility and its uptake by living organisms can be affected by physical and chemical properties of the mean. Until the present days, most of the studies examining the transference of U from soils, sediments, and natural waters to the biota took place in temperate and developed areas, where the use of the natural resources, climatic conditions, weathering processes, nutrient cycling, and metal uptake by living organisms differ significantly from those in tropical areas. In tropical areas, as soon as organic materials reach the soil surface, they are decomposed, with minimal accumulation of organic matter and a rapid recycling of nutrients and contaminants in vegetation. Mechanisms controlling the uptake of U by aquatic and terrestrial organisms in tropical regions deserve special attention considering that these areas are large producers of food worldwide. In this chapter, we consider the main environmental factors that control the U bioavailability in tropical aquatic and terrestrial ecosystems, providing useful information for risk assessment models.

Keywords

Uranium Biomonitoring Tropical areas Natural waters Tropical soils Natural radionuclides 

References

  1. Abraham J, Kim D, Singarayer F (2018) Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia. Chemosphere 192:122–132CrossRefGoogle Scholar
  2. Allard B, Olofsson U, Torstenfelt B, Kipasti H, Andersson K (1982) Sorption of actinides in well-defined oxidation states on geologic media. Mater Res Soc Symp Proc 11:775–782CrossRefGoogle Scholar
  3. Alvarenga P, Simões I, Palma P, Amaral O (2014) Field study on the accumulation of trace elements by vegetables produced in the vicinity of Abandoned Pyrite Mines. Sci Total Environ 470–471:1233–1242CrossRefGoogle Scholar
  4. Arbuzov SI, Maslov SG, Volostnov AV, Arkhipov VS (2012) Modes of occurrence of uranium and thorium in coals and peat of northern Asia. Solid Fuel Chem 46:52–66CrossRefGoogle Scholar
  5. Barillet S, Adam C, Palluel O, Devaux A (2007) Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ Toxicol Chem 26:497–505CrossRefGoogle Scholar
  6. Barillet S, Adam-Guillermin C, Palluel O, Porcher JM, Devaux A (2011) Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure. Environ Pollut 159:495–502Google Scholar
  7. Beaugelin-Seiller K, Février L, Gilbin R, Garnier-Laplace J (2012) In: Merkel BJ, Schipek M (eds) The new uranium mining boom. Springer, Heidelberg, pp 8-48Google Scholar
  8. Bednar AJ, Medina VF, Ulmer-Scholle DS, Frey BA, Johnson BL, Brostoff WN (2007) Effects of organic matter on the distribution of uranium in soil and plant matrices. Chemosphere 70:237–247CrossRefGoogle Scholar
  9. Berghorn GH, Hunzeker GR (2001) Passive treatment alternatives for remediating abandoned mine drainage. Remediat J 11:111–127CrossRefGoogle Scholar
  10. Bergmann M, Sobral O, Pratas J, Graça MAS (2018) Uranium toxicity to aquatic invertebrates: a laboratory assay. Environ Pollut 239:359–366CrossRefGoogle Scholar
  11. Bernard B (2003) Introduction to U-series Geochemistry. Rev Mineral Geochem 52:1–21CrossRefGoogle Scholar
  12. Bjorlykke K (1974) Depositional history and geochemical composition of Lower Palaeozoic epicontinental sediments from the Oslo region. Norg Geol Under no. 305 pp 81Google Scholar
  13. Bonotto DM, Fujimori K, Moreira-Nordemann LM (2007) Determination of weathering rate of the Morro do Ferro Th-REEs deposit, Brazil using U-isotope method. Appl Radiat Isot 65:474–481CrossRefGoogle Scholar
  14. Bunn L (2007) Uranium in the near-shore aquatic food chain: Studies on periphyton and Asian clams. U.S. Department of Energy, Richland, Washington, DCCrossRefGoogle Scholar
  15. Burt DM, Sheridan MFA (1980) Model for the formation of uranium lithophile element deposits in fluorine-enriched volcanic rocks. Open-file Rep, US. Department of Energy GJBX-225(80)Google Scholar
  16. Bywater JF, Banaczkowski R, Bailey M (1991) Sensitivity to uranium of six species of tropical freshwater fishes and four species of cladocerans from Northern Australia. Environ Toxicol Chem 10:1449–1458CrossRefGoogle Scholar
  17. Carreras HA, Wannaz ED, Pignata ML (2009) Assessment of human health risk related to metals by the use of biomonitors in the province of Cordoba, Argentina. Environ Pollut 157:117–122CrossRefGoogle Scholar
  18. Catalano JF, Brown JRG (2005) Uranyl adsorption onto montmorillonite: evaluation of binding sites and carbonate complexation. Geochim Cosmochim Acta 69:2995–3005CrossRefGoogle Scholar
  19. Chapman PM (2008) Environmental risks of inorganic metals and metalloids: a continuing, evolving scientific odyssey. Human Ecol Risk Assess 14:5–40CrossRefGoogle Scholar
  20. Chapman NA, McKinley IG, Penna Franca E, Shea ME, Smellie JAT (1992) The Poços de Caldas project: an introduction and summary of its implications for radioactive waste disposal. J Geochem Explor 45:1–24CrossRefGoogle Scholar
  21. Charles AL, Markich SJ, Stauber JL, De Filippis LF (2002) The effect of water hardness on the toxicity of uranium to a tropical freshwater alga (Chlorella sp.). Aquat Toxicol 60:61–73Google Scholar
  22. Chen C, Zhao K, Shang J, Liu C, Wang J, Yan Z, Liu K, Wu W (2018) Uranium (VI) transport in saturated heterogeneous media: influence of kaolinite and humic acid. Environ Pollut 240:219–226CrossRefGoogle Scholar
  23. Cheng KL, Hogan AC, Parry DL, Markich SJ, Harford AJ, van Dam RA (2010) Uranium toxicity and speciation during chronic exposure to the tropical freshwater fish, Mogurnda mogurnda. Chemosphere 79:547–554CrossRefGoogle Scholar
  24. Cordeiro C, Favas PJC, Pratas J, Sarkar SK, Venkatachalam P (2016) Uranium accumulation in aquatic macrophytes in an uraniferous region: relevance to natural attenuation. Chemosphere 156:76–87CrossRefGoogle Scholar
  25. Croteau MN, Fuller CC, Cain DJ, Campbell KM, Aiken G (2016) Biogeochemical controls of uranium bioavailability from the dissolved phase in natural freshwaters. Environ Sci Technol 50:8120–8127CrossRefGoogle Scholar
  26. Cunha CSM, Silva YJAB, Escobar MEO, Nascimento CWA (2018) Spatial variability and geochemistry of rare earth elements in soils from the largest uranium–phosphate deposit of Brazil. Environ Geochem Health 40:1629–1643CrossRefGoogle Scholar
  27. Drozdzak J, Leermakers M, Gao Y, Elskens M, Phrommavanh V, Descostes M (2016) Uranium aqueous speciation in the vicinity of the former uranium mining sites using the diffusive gradients in thin films and ultrafiltration techniques. Anal Chim Acta 913:94–103CrossRefGoogle Scholar
  28. Ehlken S, Kirchner G (2002) Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J Environ Radioact 58:97–112CrossRefGoogle Scholar
  29. Eismann CE, Menegário AA, Gemeiner H, Williams PN (2018) Predicting trace metal exposure in aquatic ecosystems: evaluating DGT as a biomonitoring tool. Exp Health 1–13Google Scholar
  30. Favas PJC, Pratas J, Varun M, D’Souza R, Paul MS (2014) Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Sci Total Environ 470-471:993–1002CrossRefGoogle Scholar
  31. Favas P, Pratas J, Mitra S, Sarkar SK, Venkatachalam P (2016) Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Sci Total Environ 568:350–368CrossRefGoogle Scholar
  32. Ferrari CR, Do Nascimento HDAF, Rodgher S, Almeida T, Bruschi AL, Nascimento MRL, Bonifácio RL (2017) Effects of the discharge of uranium mining effluents on the water quality of the reservoir: an integrative chemical and ecotoxicological assessment. Sci Rep 7:1–10CrossRefGoogle Scholar
  33. Flues M, Camargo IMC, Silva PSC, Mazzilli BP (2006) Radioactivity of coal and ashes from Figueira coal power plant in Brazil. J Radioanal Nucl Chem 270:597–602CrossRefGoogle Scholar
  34. Fortin C, Dutel L, Garnier-Laplace J (2002) Establishing links between uranium aqueous speciation and uptake by a unicellular alga. Radioprotection 37:593–598CrossRefGoogle Scholar
  35. Francis AJ (1990) Microbial dissolution and stabilization of toxic metals and radionuclides in mixed wastes. Experientia 46:840–851CrossRefGoogle Scholar
  36. Franklin NM, Stauber JL, Markich SJ, Lim RP (2000) pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat Toxicol 48:275–289CrossRefGoogle Scholar
  37. Fungaro DAE, Izidoro JC (2006) Remediaçao da drenagem ácida de mina usando zeolitas sintetizadas a partir de cinzas leves de carvão. Quim Nova 29:735–740. (In Portuguese)CrossRefGoogle Scholar
  38. Galhardi JA, García-Tenorio R, Bonotto DM, Díaz Francés I, Motta JG (2017) Natural radionuclides in plants, soils and sediments affected by U-rich coal mining activities in Brazil. J Environ Radioact 177:37–47CrossRefGoogle Scholar
  39. Garty J, Tomer S, Levin T, Lehr H (2003) Lichens as biomonitors around a coal fired power station in Israel. Environ Res 91:186–198CrossRefGoogle Scholar
  40. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510CrossRefGoogle Scholar
  41. Grimaldi PQ (1981) Uranium distribution in surface waters at Morro do Ferro and vicinity. Interoffice communication, New York University Medical CenterGoogle Scholar
  42. Guo L, Warnken KW, Santschi PH (2007) Retention behavior of dissolved uranium during ultrafiltration: implications for colloidal U in surface waters. Mar Chem 107:156–166CrossRefGoogle Scholar
  43. Gupta DK, Chatterjee S, Datta S, Veer V, Walther C (2014) Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 108:134–144CrossRefGoogle Scholar
  44. Hogan AC, Van Dam RA, Markich SJ, Camilleri C (2005) Chronic toxicity of uranium to a tropical green alga (Chlorella sp.) in natural waters and the influence of dissolved organic carbon. Aquat Toxicol 75:343–353CrossRefGoogle Scholar
  45. Holmes DC, Pitty AE, Noy DJ (1992) Geomorphological and hydrogeological features of the Poços de Caldas caldera analogue study sites. J Geochem Explor 45:215–247CrossRefGoogle Scholar
  46. International Atomic Energy Agency (IAEA) (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. IAEA, ViennaGoogle Scholar
  47. Jha VN, Tripathi RM, Sethy NK, Sahoo SK (2016) Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India. Sci Total Environ 539:175–184CrossRefGoogle Scholar
  48. Kabata-Pendias A (2011) Trace elements in soil and plants, 4nd edn. CRC Press, Boca Raton, pp 533Google Scholar
  49. Kim JJ (1986) Chemical behavior of transuranic elements in aquatic systems. In: Freeman AJ, Keller C (eds) Handbook on the physics and chemistry of the actinides. Elsevier Science Publishers, Amsterdam, pp 413–455Google Scholar
  50. Kim RY, Yoon JK, Kim TS, Yang JE, Owens G, Kim KR (2015) Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environ Geochem Health 37:1041–1061CrossRefGoogle Scholar
  51. Kritsananuwat R, Arae H, Fukushi M, Sahoo SK, Chanyotha S (2015) Natural radioactivity survey on soils originated from southern part of Thailand as potential sites for nuclear power plants from radiological viewpoint and risk assessment. J Radioanal Nucl Chem 305:487–499CrossRefGoogle Scholar
  52. Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569CrossRefGoogle Scholar
  53. Lauria CD, Sachi IA, Pereira JC, Zeharo R (1994) Determination of cesium-137 soil-to-plant concentration ratios for vegetables in Goiania city, Brazil. J Radioanal Nucl Chem 182:91–96CrossRefGoogle Scholar
  54. Lourenço J, Marques S, Carvalho FP, Oliveira J, Malta M, Santos M, Mendo S (2017) Uranium mining wastes: the use of the Fish Embryo Acute Toxicity Test (FET) test to evaluate toxicity and risk of environmental discharge. Sci Total Environ 605–606:391–404CrossRefGoogle Scholar
  55. Markich SJ (2002) Uranium speciation and bioavailability in aquatic systems: an overview. Scient World J 2:707–729Google Scholar
  56. Markich SJ, Brown PL, Jeffree RA, Lim RP (2000) Valve movement responses of Velesunio angasi (Bivalvia: Hyriidae) to manganese and uranium: an exception to the free ion activity model. Aquat Toxicol 51:155–175CrossRefGoogle Scholar
  57. Massarin S, Alonzo F, Garcia-Sanchez L, Gilbin R, Garnier-Laplace J, Poggiale JC (2010) Effects of chronic uranium exposure on life history and physiology of Daphnia magna over three successive generations. Aquat Toxicol 99:309–319Google Scholar
  58. Mazzilli BP, Saueia CHR, Jacomino VMF, Mello JWV (2012) Natural radionuclides and metals intake into soya, corn and lettuce grown on soil amended with phosphogipsita. Int J Environ Anal Chem 92:1574–1586CrossRefGoogle Scholar
  59. Mibus J, Sachs S, Pfingsten W, Nebelung C, Bernhard G (2007) Migration of uranium (IV)/(VI) in the presence of humic acids in quartz sand: a laboratory column study. J Contam Hydrol 89:199–217CrossRefGoogle Scholar
  60. Mkandawire M (2013) Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines. Environ Sci Pollut Res 20:7740–7767CrossRefGoogle Scholar
  61. Moreira-Nordemann LM (1980) Use of 234U/238U disequilibrium in measuring chemical weathering rate of rocks. Geochim Cosmochim Acta 44:103–108CrossRefGoogle Scholar
  62. Moreira-Nordemann LM (1984) Salinity and weathering rate of rocks in a semi-arid region. J Hydrol 71:131–147CrossRefGoogle Scholar
  63. Nakajima A, Horikoshi T, Sakaguchi T (1979) Ion effects on the uptake of uranium by Chlorella regularis. Agric Biol Chem 43:625–629Google Scholar
  64. Pacheco ML, Havel J (2001) Capillary zone electrophoretic (CZE) study of uranium(VI) complexation with humic acids. J Radioanal Nucl Chem 248:565–570CrossRefGoogle Scholar
  65. Papastefanou C (2010) Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review. J Environ Radioact 101:191–200CrossRefGoogle Scholar
  66. Papp Z, Dezso Z, Daróczy S (2002) Significant radioactive contamination of soil around a coal-fired thermal power plant. J Environ Radioact 59:191–205CrossRefGoogle Scholar
  67. Pauget B, Villeneuve A, Redon PO, Cuvier A, de Vaufleury A (2017) Assessment of the bioavailability and depuration of uranium, cesium and thorium in snails (Cantareus aspersus) using kinetics models. J Hazard Mater 335:75–83Google Scholar
  68. Planinsek E, Smodis B, Benedik L (2016) Simultaneous determination and uptake assessment of selected radionuclides in plants grown in substrate contaminated with U-mill tailings. J Radioanal Nucl Chem 309:351–365CrossRefGoogle Scholar
  69. Prikryl JD, Jain A, Turner DR, Pabalan RT (2001) Uranium(VI) sorption behavior on silicate mineral mixtures. J Contam Hydrol 47:241–253CrossRefGoogle Scholar
  70. Reis P, Lourenço J, Carvalho FP, Oliveira J, Malta M, Mendo S, Pereira R (2018) RIBE at an inter-organismic level: a study on genotoxic effects in Daphnia magna exposed to waterborne uranium and a uranium mine effluent. Aquat Toxicol 198:206–214CrossRefGoogle Scholar
  71. Ribeiro FCA, Silva JIR, Lima ESA, Do Amaral Sobrinho NMB, Perez DV, Lauria DC (2018) Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): radiological characterization and relationships to geological formation, soil types and soil properties. J Environ Radioact 182:34–43CrossRefGoogle Scholar
  72. Riethmuller N, Markich SJ, Van Dam RA, Parry D (2001) Effects of water hardness and alkalinity on the toxicity of uranium to a tropical freshwater hydra (Hydra viridissima). Biomarkers 6:45–51Google Scholar
  73. Romberger SB (1984) Transport and deposition of uranium in hydrothermal systems at temperatures up to 300°C: geological implications. In: Vivo B, Ippolito F, Capaldi G, Simpson PR (eds) Uranium geochemistry, mineralogy, geology, exploration and resources. Springer, Dordrecht, pp 202Google Scholar
  74. Rose AW (1994) Drainage geochemistry in uranium exploration. In: Hale M, Plant JA (eds) Handbook of Exploration Geochemistry, vol 6. Elsevier Science, Amsterdam, pp 559–599Google Scholar
  75. Saetre P, Valentin J, Lagera P, Avila R, Kautsky U (2013) Land use and food intake of future inhabitants: outlining a representative individual of the most exposed group for dose assessment. Ambio 42:488–496CrossRefGoogle Scholar
  76. Santos PL, Gouvea RC, Dutra IR (1993) Lead-210 in vegetables and soils from an area of high natural radioactivity in Brazil. Sci Total Environ 138:37–46CrossRefGoogle Scholar
  77. Santos EE, Lauria DC, Amaral ECS, Rochedo ER (2002) Daily ingestion of232Th, 238U, 226Ra, 228Ra and 210Pb in vegetables by inhabitants of Rio de Janeiro City. J Environ Radioact 62:75–86Google Scholar
  78. Santos-Frances F, Pacheco EG, Martínez-Graña A, Rojo PA, Zarza CA, Sanchez AG (2018) Concentration of uranium in the soils of the west of Spain. Environ Pollut 23:1–11CrossRefGoogle Scholar
  79. Sert E, Ugur A, Ozden B, Saç MM, Camgoz BC (2011) Biomonitoring of 210Po and 210Pb using lichens and mosses around coal-fired power plants in Western Turkey. J Environ Radioact 102:535–542Google Scholar
  80. Sheppard MI, Sheppard SC (1985) The plant concentration concept as applied to natural uranium. Health Phys 48:494–500Google Scholar
  81. Sheppard SC, Sheppard MI, Gallerand MO, Sanipelli B (2005) Derivation of ecotoxicity thresholds for uranium. J Environ Radioact 79:55–83CrossRefGoogle Scholar
  82. Shtangeeva I (2010) Uptake of uranium and thorium by native and cultivated plants. J Environ Radioact 101:458–463CrossRefGoogle Scholar
  83. Simon O, Gagnaire B, Camilleri V, Cavalié I, Floriani M, Adam-Guillermin C (2018) Toxicokinetic and toxicodynamic of depleted uranium in the zebrafish, Danio rerio. Aquat Toxicol 197:9–18CrossRefGoogle Scholar
  84. Sohlenius G, Saetre P, Norden S, Grolander S, Sheppard S (2013) Inferences about radionuclide mobility in soils based on the solid/liquid partition coefficients and soil properties. Ambio 42:414–424CrossRefGoogle Scholar
  85. Staven LH, Napier BA, Rhoads K, Strenge DLA (2003) Compendium of transfer factors for agricultural and animal products (PNNL-13421). United State Nuclear Regulatory Commission, Washington, DC, pp 32CrossRefGoogle Scholar
  86. Taylor SR (1996) Trace element abundances and the chondritic Earth model. Geochem Cosmochim Acta 28:1989–1998CrossRefGoogle Scholar
  87. Tolbert GE (1955) Preliminary report on the Morro do Ferro thorium bearing rare-earths deposit, Poços de Caldas plateau, Brazil. Technical Report, Conselho Nacional de Pesquisas, Rio de JaneiroGoogle Scholar
  88. Trenfield MA, McDonald S, Kovacs K, Lesher EK, Pringle JM, Markich SJ, Van Dam RA (2011) Dissolved organic carbon reduces uranium bioavailability and toxicity. 1. Characterization of an aquatic fulvic acid and its complexation with uranium[VI]. Environ Sci Technol 45:3075–3081CrossRefGoogle Scholar
  89. Turekian K, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192CrossRefGoogle Scholar
  90. United States Environmental Protection Agency (USEPA) (1995) Human health and environmental damages from mining and mineral processing wastes. Archive document. Office of Solid Waste. US Environ. Protection AgencyGoogle Scholar
  91. UNSCEAR (2000) United Nations Scientific Committee on the effects of atomic radiation sources and effects of ionizing radiation. Report to the General Assembly Annex B: exposures of the public and workers from various sources of radiation. United Nations, New YorkGoogle Scholar
  92. USEPA (2006) Radionuclides in soil, Rad Town USA, United States Environmental Protection Agency, Office of Radiation and Indoor Air, EPA 402-F-06-051Google Scholar
  93. Vandenhove H, Van Hees M, Wouters K, Wannijn J (2007) Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration. Environ Pollut 145:587–595CrossRefGoogle Scholar
  94. Vandenhove H, Olyslaegers G, Sanzharova N, Shubina O, Reed E, Shang Z, Velasco H (2009) Proposal for new best estimates of the soil-to-plant transfer factor of U, Th, Ra, Pb and Po. J Environ Radioact 100:721–732CrossRefGoogle Scholar
  95. Vasconcellos LMH, Amaral ECS, Vianna ME, Franca EP (1987) Uptake of 226Ra and 210Pb by food crops cultivated in a region of high natural radioactivity in Brazil. J Environ Radioact 5:287–302CrossRefGoogle Scholar
  96. Veiga LHS, Amaral ECS, Fernandes HM (1998) Human health risk screening of radioactive and nonradioactive contaminants due to uranium industry operation. J Environ Radioact 39:69–85CrossRefGoogle Scholar
  97. Veiga LHS, Melo V, Koifman S, Amaral ECS (2004) High radon exposure in a Brazilian underground coal mine. J Radiol Prot 24:295–305CrossRefGoogle Scholar
  98. Wang Q, Cheng T, Wu Y (2014) Influence of mineral colloids and humic substances on uranium (VI) transport in water-saturated geologic porous media. J Contam Hydrol 170:76–85CrossRefGoogle Scholar
  99. Wasserman MA, Bartoly F, Viana AG, Silva MM, Rochedo ER, Perez DV, Conti CC (2008) Soil to plant transfer of 137Cs and 60Co in Ferralsol, Nitisol and Acrisol. J Environ Radioact 99:546–553CrossRefGoogle Scholar
  100. Wedow H (1967) The Morro do Ferro thorium and rare-earth ore deposit, Poços de Caldas District, Brazil. United States Geological Survey Bulletin 1185-D, pp 35Google Scholar
  101. Willey NJ (2014) Soil to plant transfer of radionuclides: Predicting the fate of multiple radioisotopes in plants. J Environ Radioact 133:31–34CrossRefGoogle Scholar
  102. Yamaguchi N, Kawasaki A, Iiyama I (2009) Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers. Sci Total Environ 407:1383–1390CrossRefGoogle Scholar
  103. Zhang Y, Shi M, Wang J, Yao J, Cao Y, Romero CE, Pan W (2016) Occurrence of uranium in Chinese coals and its emissions from coal-fired power plants. Fuel 166:404–409CrossRefGoogle Scholar
  104. Zhao CM, Campbell PGC, Wilkinson KJ (2016) When are metal complexes bioavailable? Environ Chem 13:425–433CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juliana A. Galhardi
    • 1
  • Daniel M. Bonotto
    • 2
  • Carlos E. Eismann
    • 3
  • Ygor Jacques A. B. Da Silva
    • 4
  1. 1.Department of ChemistryUniversity of MontrealMontréalCanada
  2. 2.Department of Petrology and Metalogy, Institute of Geosciences and Exact SciencesSão Paulo State UniversityRio ClaroBrazil
  3. 3.Center for Environmental StudiesSão Paulo State UniversityRio ClaroBrazil
  4. 4.Department of AgronomyFederal Rural University of PernambucoRecifeBrazil

Personalised recommendations