Advertisement

Assessment Modelling and the Evaluation of Radiological and Chemical Impacts of Uranium on Humans and the Environment

  • M. C. Thorne
Chapter
Part of the Radionuclides and Heavy Metals in the Environment book series (RHME)

Abstract

Models of varying degrees of complexity are used to simulate the transport of uranium through the environment. These models rely heavily on empirical data on soil and sediment distribution coefficients and concentration ratios or transfer factors for biota. The empirical data relevant to modelling uranium transport in both terrestrial and aquatic environments are reviewed, and consideration is given to how either measured or calculated concentrations of uranium in environmental media can be used to evaluate radiotoxic and chemotoxic impacts on human health and the environment.

Keywords

Mathematical model Distribution coefficients Concentration ratios Transfer factors Radiotoxicity Chemotoxicity Humans Environment 

References

  1. Al-Kharouf SJ, Al-Hamarneh IF, Dababneh M (2008) Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan. J Environ Radioact 99:1192–1199CrossRefGoogle Scholar
  2. Allard B, Kipatsi H, Torstenfelt B, Rydberg G (1979) Nuclide transport by groundwater in Swedish bedrock. In: McCarthy GJ (ed) Scientific basis for nuclear waste management. Plenum Press, New York, pp 403–410CrossRefGoogle Scholar
  3. Allard B, Olofsson U, Torstenfelt B, Kipatsi H (1982) Sorption of actinides in well-defined oxidation states on geologic media. In: Lutze W (ed) Scientific basis for radioactive waste management-V. Elsevier, pp 775–782Google Scholar
  4. ATSDR (2013) Toxicological profile for uranium, Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services Public Health Service. http://www.atsdr.cdc.gov/
  5. Ballestra S, Noshkin V (1991) Report on the intercomparison run: radionuclides in seawater and collected outside Mururoa Atoll, IAEA/AL/044, IAEA, ViennaGoogle Scholar
  6. Bosson E, Sassner M, Sabel U, Gustafsson LG (2010) Modelling of present and future hydrology and transport-SR Site Biosphere, SKB R-10-02. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  7. Brunskill GJ, Wilkinson P (1987) Annual supply of uranium-238, uranium-234, thorium-230, radium-226, lead-210, polonium-210 and thorium-232 to lake 239 (Experimental Lakes Area, Ontario, Canada) from terrestrial and atmospheric sources. Can J Fish Aquat Sci 44(Suppl. 1):215–230CrossRefGoogle Scholar
  8. Canadian Council of Ministers of the Environment (CCME) (2007) Canadian soil quality guidelines for uranium: Environmental and human health. Canadian Council of Ministers of the EnvironmentGoogle Scholar
  9. Canadian Council of Ministers of the Environment (CCME) (2011) Scientific criteria document for the development of the Canadian Water Quality Guidelines for the protection of aquatic life: Uranium. PN 1451. ISBN 978-1-896997-97-1Google Scholar
  10. Chen SB, Zhu YG, Hu QH (2005) Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. J Environ Radioact 82:223–236CrossRefGoogle Scholar
  11. Di Leila LA, Nannoni F, Protano G, Riccobono F (2005) Uranium contents and 235U:238U atom ratios in soil and earthworms in western Kosovo after the 1999 war. Sci Total Environ 337:109–118Google Scholar
  12. Echevarria G, Sheppard M, Morel JL (2001) Effect of pH on the sorption of uranium in soils. J Environ Radioact 53:257–264CrossRefGoogle Scholar
  13. EPA (1999) Understanding variation in partitioning coefficients, Kd, values: volume ii: review of geochemistry and available Kd values for cadmium, caesium, chromium, lead, plutonium, radon, strontium, thorium, tritium and uranium. US Environmental Protection Agency, Office of Air and Radiation, Washington, DC. EPA 402-R-99-004B.Google Scholar
  14. EPA (2005) A regulator’s guide to the management of radioactive residuals from drinking water treatment technologies. United States Environmental Protection Agency, Office of Water (4606M), EPA 816-R-05-004Google Scholar
  15. Giovanetti A, Fesenko S, Cozzella ML, Asencio LD, Sansone U (2010) Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium. J Environ Radioact 101:509–516CrossRefGoogle Scholar
  16. Gooddy DC, Shand P, Kinniburgh DG, Van Riemsdijk WH (1995) Field-based partition coefficients for trace elements in soil solutions. Eur J Soil Sci 46:265–285CrossRefGoogle Scholar
  17. Goulet RR, Fortin C, Spry DJ (2012) Uranium. In: Homeostasis and toxicology of non-essential metals. Fish Physiol vol. 31B, pp 391–428Google Scholar
  18. Herczeg AL, Simpson HJ, Anderson RF, Trier RM, Mathieu GG, Deck BL (1988) Uranium and radium mobility in ground waters and brines within the Delaware basin, south eastern New Mexico, USA. Chem Geol 72:181–196Google Scholar
  19. Hodge VF, Koide M, Goldberg ED (1979) Particulate uranium, plutonium and polonium in the biogeochemistries of the coastal zone. Nature 277:206CrossRefGoogle Scholar
  20. Hogan AC, van Dam RA, Markich SJ, Camilleri C (2003) Chronic toxicity of uranium to the tropical green alga Chlorella sp. for the derivation of a site-specific Trigger Value for Magela Creek. Internal Report 412, December, Supervising Scientist, Darwin, AustraliaGoogle Scholar
  21. Holm E, Persson BRR (1980) Behaviour of natural (Th and U) and artificial (Pu and Am) actinides in coastal waters, Marine Radioecology (Proc. 3rd OECD/NEA Sem. Tokyo,1979). OECD, Paris, pp 237Google Scholar
  22. IAEA (1978) The radiological basis of the IAEA revised definition and recommendations concerning high-level radioactive waste unsuitable for dumping at sea, IAEA-TECDOC-211. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  23. IAEA (2004) Sediment distribution coefficients and concentration factors for biota in the marine environment, IAEA technical reports series no. 422. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  24. IAEA (2009) Quantification of radionuclide transfers in terrestrial and freshwater environments for radiological assessments, IAEA-TECDOC-1616. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  25. IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments, IAEA technical reports series no. 472. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  26. IAEA (2014) Handbook of parameter values for the prediction of radionuclide transfer to wildlife, technical reports series no. 479. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  27. IAEA (2018) The environmental behaviour of uranium. International Atomic Energy Agency, Vienna, Austria. (In press)Google Scholar
  28. ICRP (1975) Report of the task group on reference man, ICRP Publication 23. Pergamon Press, Oxford, UKGoogle Scholar
  29. ICRP (1994) Human respiratory tract model for radiological protection, ICRP Publication 66. Ann ICRP 24(1–3)Google Scholar
  30. ICRP (1995) Age-dependent doses to members of the public from intake of radionuclides: part 3–ingestion dose coefficients, ICRP Publication 69. Ann ICRP 25(1)Google Scholar
  31. ICRP (1996) Age-dependent doses to members of the public from intake of radionuclides: part 5–compilation of ingestion and inhalation dose coefficients, ICRP Publication 72. Ann ICRP 26(1)Google Scholar
  32. ICRP (2007) The 2007 recommendations of the International Commission on Radiological Protection: user’s edition, ICRP Publication 103. Ann ICRP 37(2–4)Google Scholar
  33. ICRP (2008) Environmental protection: the concept and use of reference animals and plants, ICRP Publication 108. Ann ICRP 38(4–6)Google Scholar
  34. ICRP (2009) Environmental protection: transfer parameters for reference animals and plants, ICRP Publication 114. Ann ICRP 39(6)Google Scholar
  35. ICRP (2012) Compendium of dose coefficients based on ICRP Publication 60, ICRP Publication 119. Ann ICRP 41(Supplement 1)Google Scholar
  36. ICRP (2014) Protection of the environment under different exposure situations, ICRP Publication 124. Ann ICRP 43(1)Google Scholar
  37. Jazzar MM, Thabayneh KM (2014) Transfer of natural radionuclides from soil to plants and grass in the Western North of West Bank Environment, Palestine. Int J Environ Monit Analy 2:252–258CrossRefGoogle Scholar
  38. Jones D, Humphrey C, Iles M, Van Dam R (2006) An approach to deriving water quality criteria with implications for closure—Ranger Mine case study. In: Fourie A, Tibbert M (eds) Proceedings of the first international seminar on mine closure, Mine Closure 2006, Perth, Australia pp 635–46Google Scholar
  39. Kohler M, Gleisberg B, Niese S (2000) Investigation of the soil-plant transfer of primordial radionuclides in tomatoes by low-level gamma-ray spectrometry. Appl Radiat Isot 53:203–208Google Scholar
  40. Köster W (2004) Transport of solutes across biological membranes: prokaryotes. In: van Leeuwen HP, Köster W (eds) Physicochemical kinetics and transport at biointerfaces, Wiley, Chichester, pp 271-335.Google Scholar
  41. Kritsananuwat R, Sahoo SK, Arae H, Fukushi M (2015) Distribution of 238U and 232Th in selected soil and plant samples as well as soil to plant transfer factors around Southern Thailand. J Radioanal Nucl Chem 303:2571–2577CrossRefGoogle Scholar
  42. Kurttio P, Harmoinen A, Saha H, Salonen L, Karpas Z, Komulainen H, Auvinen A (2006) Kidney toxicity of ingested uranium from drinking water. Amer J Kid Diseas 47:972–982CrossRefGoogle Scholar
  43. Langston WJ, Spence SK (1995) Biological factors involved in metal concentrations observed in aquatic organisms. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, pp 407–478Google Scholar
  44. Laroche L, Henner P, Camilleri V, Morello M, Garnier-Laplace J (2005) Root uptake of uranium by a higher plant model (Phaseolus vulgaris) - bioavailability from soil solution. Radioprotection 40(Sup 1):S33–S39CrossRefGoogle Scholar
  45. Leggett RW (1989) The behaviour and chemical toxicity of U in the kidney: a reassessment. Health Phys 57:365–383CrossRefGoogle Scholar
  46. Leggett RW, Meck RA (2018) Action levels for uranium in the workplace: chemical and radiological assessments. J Radiol Prot 38:632–649CrossRefGoogle Scholar
  47. Lourenço J, Silva A, Carvalo F, Oliviera J, Malta M, Mendo S, Gonçalves F, Pereira R (2011) Histopathological changes in the earthworm Eisenia andrei associated with the exposure to metals and radionuclides. Chemosphere 85:1630–1634CrossRefGoogle Scholar
  48. Lourenço J, Pereira R, Silva A, Carvalo F, Oliveira J, Malta M, Paiva A, Gonçalves F, Mendo S (2012) Evaluation of the sensitivity of genotoxicity and cytotoxicity endpoints in earthworms exposed in situ to uranium mining wastes. Ecotoxicol Environ Saf 75:46–54CrossRefGoogle Scholar
  49. Manigandan PK, Shekar C (2014) Uptake of some radionuclides by woody plants growing in the rainforest of Western Ghats in India. J Environ Radioact 130:63–67CrossRefGoogle Scholar
  50. Markich SJ (2002) Uranium speciation and bioavailability in aquatic systems: an overview. Sci World J 2:707–729CrossRefGoogle Scholar
  51. Marsden ID, Rainbow PS (2004) Does the accumulation of trace metals in crustaceans affect their ecology-the amphipod example? J Exp Mar Biol Ecol 300:373–408CrossRefGoogle Scholar
  52. Mathews T, Beaugelin-Seiller K, Garnier-Laplace J, Gilbin R, Adam C, Della-Vedova C (2009) A probabilistic assessment of the chemical and radiological risks of chronic exposure to uranium in freshwater ecosystems. Environ Sci Technol 43:6684–6690CrossRefGoogle Scholar
  53. MEDAD (2007) Circulaire du 7 mai 2007 définissant les “normes de qualité environnementale provisoires (NQEp)” des 41 substances impliquées dans l’évaluation de l’état chimique des masses d’eau ainsi que des substances pertinentes du programme national de réduction des substances dangereuses dans l’eauGoogle Scholar
  54. Nilsson M, Dahlgaard H, Holm E, Dahlgaard H, Mattsson S, Edgren M, Notter M (1981) Radionuclides in Fucus from inter-Scandinavian waters, impacts of radionuclide releases into the marine environment (Proc. Symp. Vienna, 1980), IAEA, Vienna, pp 501–13Google Scholar
  55. Payne TE, Airey PL (2006) Radionuclide migration at the Koongarra uranium deposit, Northern Australia—lessons from the Alligator Rivers analogue project. Phys Chem Earth 31:572–586CrossRefGoogle Scholar
  56. Payne TE, Brendler V, Nebelung C, Comarmond MJ (2011) Assessment of surface area normalisation for interpreting distribution coefficients (Kd) for uranium sorption. J Environ Radioact 102:888–895CrossRefGoogle Scholar
  57. Pentreath RJ (1977) Radionuclides in fish. Oceanogr Mar Biol Ann Rev 15:365Google Scholar
  58. Popic JM, Salbu B, Strand T, Skipperud L (2011) Assessment of radionuclide and metal contamination in a thorium rich area in Norway. J Environ Monit 13:1730CrossRefGoogle Scholar
  59. Premuzic ET, Francis AJ, Lin M, Schubert J (1995) Induced formation of chelating agents by Pseudomonas aeruginosa grown in presence of thorium and uranium. Arch Environ Contam Toxicol 14:759–768CrossRefGoogle Scholar
  60. Pulhani VA, Dafauti S, Hegde AG, Sharma RM, Mishra UC (2005) Uptake and distribution of natural radioactivity in wheat plants from soil. J Environ Radioact 79:331–346CrossRefGoogle Scholar
  61. Rand GM, Wells PG, McCarty LS (1995) Introduction to aquatic toxicology. In: Rand GM (ed) Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment, 2nd edn. Taylor and Francis, Washington, DC, pp 3–69Google Scholar
  62. Riethmuller N, Camilleri C, Franklin N, Hogan A, King A, Koch A, Markich SJ, Turley C, van Dam R (2003) Ecotoxicological testing protocols for Australian tropical freshwater ecosystems. Supervising Scientist Report 173, Supervising Scientist, Darwin, AustraliaGoogle Scholar
  63. Roivainen P, Makkonen S, Holopainen T, Juutilainen J (2011) Soil-to-plant transfer of uranium and its distribution between plant parts in four boreal forest species. Boreal Environ Res 16:158–166Google Scholar
  64. Saeed MA, Yusof SS, Hossain I, Ahmed R, Abdullah HY, Shahid M, Ramli AT (2011) Soil to rice transfer factor of the natural radionuclides in Malaysia. Rom J Phys 57:1417–1424Google Scholar
  65. Saric MR, Stojanovic M, Babic M (1995) Uranium in plant species grown on natural barren soil. J Plant Nutrit 18:1509–1518CrossRefGoogle Scholar
  66. Sheppard SC, Evenden WG (1988) Critical compilation and review of plant/soil concentration ratios for uranium, thorium and lead. J Environ Radioact 8:255–285CrossRefGoogle Scholar
  67. Sheppard SC, Sheppard MI, Tait JC, Sanipelli BL (2006) Revision and meta-analysis of selected biosphere parameter values for chlorine, iodine, neptunium, radium, radon and uranium. J Environ Radioact 89:115–137CrossRefGoogle Scholar
  68. Sheppard S, Sohlenius G, Borgiel M, Grolander S, Norden S (2011) Solid/liquid partition coefficients (Kd) and plant/soil concentration ratios (CR) for selected soils, tills and sediments at Forsmark. Swedish Nuclear Fuel and Waste Management, Report R-11-24Google Scholar
  69. Shtangeeva I (2010) Uptake of uranium and thorium by native and cultivated plants. J Environ Radioact 101:458–463CrossRefGoogle Scholar
  70. Simon O, Garnier-Laplace J (2005) Laboratory and field assessment of uranium trophic transfer efficiency in the crayfish Orconectes limosus fed the bivalve C. fluminea. Aquat Toxicol 74:372–383CrossRefGoogle Scholar
  71. Skoko B, Marović G, Babić D (2014) Radioactivity in the Mediterranean flora of the Kaštela Bay, Croatia. J Environ Radioact 135:36–43CrossRefGoogle Scholar
  72. Soudek P, Petrová S, Buzek M, Lhotský O, Vaněk T (2014) Uranium uptake in Nicotiana sp. under hydroponic conditions. J Geochem Expl 142:130–137CrossRefGoogle Scholar
  73. Stopps GJ, Todd M (1982) The chemical toxicity of uranium with special reference to effects on the kidney and the use of urine for biological monitoring. Atomic Energy Control Board, Ottawa, Canada:INFO–6074Google Scholar
  74. Swift DJ, Kershaw PJ (1999) Generic Parameters for Modelling Marine and Freshwater Systems, Environ. Techn. Note RL 7/99, Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UKGoogle Scholar
  75. Szefer P, Ostrowski S (1980) On the occurrence of uranium and thorium in the biosphere of natural waters, 1. Uranium and thorium in plankton and inherent plants. Oceanology 13:35Google Scholar
  76. Thorne MC (2003) Estimation of animal transfer factors for radioactive isotopes of iodine, technetium, selenium and uranium. J Environ Radioact 70:3–20CrossRefGoogle Scholar
  77. Thorne MC (2012) Modelling radionuclide transport in the environment and calculating radiation doses. In: Poinssot C, Geckeis H (eds) Radionuclide Behaviour in the Natural Environment: Science, Implications and Lessons for the Nuclear Industry. Woodhead Publishing, OxfordGoogle Scholar
  78. Thorne MC (2014) Kinetic models for representing the uptake of radionuclides in plants, In: Gupta DK, Walther C (eds), Radionuclide contamination and remediation through plants, Springer, pp 215–233Google Scholar
  79. Thorne MC, Wilson J (2015) Generally applicable limits on intakes of uranium based on its chemical toxicity and the radiological significance of intakes at those limits. J Radiol Prot 35:743–762CrossRefGoogle Scholar
  80. USGS (2008) Uranium in Surface Waters and Sediments affected by Historical Mining in the Denver West 1:100,000 quadrangle, Colorado. Reston, VA: U.S. Geological Survey. Scientific Investigations Report 2007-5246. http://pubs.usgs.gov/sir/2007/5246/508ZielinskiSIR07_5246.pdf. January 26, 2011
  81. Van Herwijnen R, Verbruggen EMJ (2014) Water quality standards for uranium: proposals for new standards according to the Water Framework Directive, RIVM Letter Report 270006003/2014, National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sport, The NetherlandsGoogle Scholar
  82. Vandenhove H, Gil-García C, Rigol A, Vidal M (2009) New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 2. Naturally occurring radionuclides. J Environ Radioact 100:697–703CrossRefGoogle Scholar
  83. WHO (2012) Uranium in drinking-water, background document for development of WHO guidelines for drinking-water quality. World Health Organisation, Geneva, SwitzerlandGoogle Scholar
  84. Wilson J, Thorne M (2015) An assessment and comparison of the chemotoxic and radiotoxic properties of uranium compounds, ASSIST Report 1207-ASS-6-1: Version 2 contractor-approved report prepared for Radioactive Waste Management Limited. Harwell, Oxfordshire, UKGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. C. Thorne
    • 1
  1. 1.Quarry Cottage, HamsterleyBishop AucklandUK

Personalised recommendations