Advertisement

Power Laws and Porous Media

  • Sverre HolmEmail author
Chapter

Abstract

Poroelasticity or poroviscoelasticity is a rich field with complex physics-based models. It can model both compressional and shear waves in sub-bottom ocean sediments and is also used for modeling shear waves in the human body in elastography.

References

  1. R. Bachrach, J. Dvorkin, A.M. Nur, Seismic velocities and Poisson’s ratio of shallow unconsolidated sands. Geophysics 65(2), 559–564 (2000)ADSCrossRefGoogle Scholar
  2. P.J. Basser, Interstitial pressure, volume, and flow during infusion into brain tissue. Microvasc. Res. 44(2), 143–165 (1992)CrossRefGoogle Scholar
  3. J.G. Berryman, Confirmation of Biot’s theory. Appl. Phys. Lett. 37(4), 382–384 (1980)ADSCrossRefGoogle Scholar
  4. M.A. Biot, General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. 23(1), 91–96 (1956a)MathSciNetzbMATHGoogle Scholar
  5. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956b)ADSMathSciNetCrossRefGoogle Scholar
  6. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956c)ADSMathSciNetCrossRefGoogle Scholar
  7. M.A. Biot, Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am. 34(9A), 1254–1264 (1962)ADSMathSciNetCrossRefGoogle Scholar
  8. D. Bland, The Theory of Linear Viscoelasticity (Pergamon Press, Oxford, London, New York, Paris, 1960)zbMATHGoogle Scholar
  9. M.J. Buckingham, Response to Comments on ‘Pore fluid viscosity and the wave properties of saturated granular materials including marine sediments [J. Acoust. Soc. Am. 127, 2095–2098 (2010)]’, J. Acoust. Soc. Am.127(4), 2099–2102 (2010)Google Scholar
  10. M.J. Buckingham, Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. J. Acoust. Soc. Am. 102, 2579–2596 (1997)ADSCrossRefGoogle Scholar
  11. M.J. Buckingham, Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments. J. Acoust. Soc. Am. 108(6), 2796–2815 (2000)ADSCrossRefGoogle Scholar
  12. M.J. Buckingham, On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments. J. Acoust. Soc. Am. 122(3), 1486–1501 (2007)ADSCrossRefGoogle Scholar
  13. M.J. Buckingham, Analysis of shear-wave attenuation in unconsolidated sands and glass beads. J. Acoust. Soc. Am. 136(5), 2478–2488 (2014)ADSCrossRefGoogle Scholar
  14. Á. Cartea, D. del Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 76(4), 041105–1–7 (2007)Google Scholar
  15. S.N. Chandrasekaran, S. Holm, A multiple relaxation interpretation of the extended Biot model (2019). Submitted for publicationGoogle Scholar
  16. N.P. Chotiros, An inversion for Biot parameters in water-saturated sand. J. Acoust. Soc. Am. 112(5), 1853–1868 (2002)ADSCrossRefGoogle Scholar
  17. N.P. Chotiros, Acoustics of the Seabed as a Poroelastic Medium (Springer and ASA Press, Switzerland, 2017)CrossRefGoogle Scholar
  18. N.P. Chotiros, M.J. Isakson, A broadband model of sandy ocean sediments: Biot-Stoll with contact squirt flow and shear drag. J. Acoust. Soc. Am. 116(4), 2011–2022 (2004)ADSCrossRefGoogle Scholar
  19. N.P. Chotiros, M.J. Isakson, Shear wave attenuation and micro-fluidics in water-saturated sand and glass beads. J. Acoust. Soc. Am. 135(6), 3264–3279 (2014)ADSCrossRefGoogle Scholar
  20. J. Dvorkin, A. Nur, Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics 58(4), 524–533 (1993)ADSCrossRefGoogle Scholar
  21. M. Enelund, P. Olsson, Time domain formulation of the Biot poroelastic theory using fractional calculus. IFAC Proc. 39(11), 391–396 (2010)CrossRefGoogle Scholar
  22. Z.E.A. Fellah, C. Depollier, Transient acoustic wave propagation in rigid porous media: A time-domain approach. J. Acoust. Soc. Am. 107(2), 683–688 (2000)Google Scholar
  23. Z.E.A. Fellah, J.Y. Chapelon, S. Berger, W. Lauriks, C. Depollier, Ultrasonic wave propagation in human cancellous bone: Application of Biot theory. J. Acoust. Soc. Am. 116(1), 61–73 (2004)ADSCrossRefGoogle Scholar
  24. M. Fellah, Z.E.A. Fellah, F. Mitri, E. Ogam, C. Depollier, Transient ultrasound propagation in porous media using Biot theory and fractional calculus: Application to human cancellous bone. J. Acoust. Soc. Am. 133(4), 1867–1881 (2013)ADSCrossRefGoogle Scholar
  25. R. Garrappa, F. Mainardi, G. Maione, Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19(5), 1105–1160 (2016)MathSciNetCrossRefGoogle Scholar
  26. J. Geertsma, D.C. Smit, Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophysics 26(2), 169–181 (1961)ADSMathSciNetCrossRefGoogle Scholar
  27. I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, ed. by A. Jeffrey (Academic Press. 4th edn. by Y. V. Geronimus and M. Yu. Tseytlin 2014)Google Scholar
  28. A. Hanyga, Viscous dissipation and completely monotonic relaxation moduli. Rheol. Acta 44(6), 614–621 (2005)CrossRefGoogle Scholar
  29. S. Holm, Spring-damper equivalents of the fractional, poroelastic, and poroviscoelastic models for elastography. NMR Biomed. e3854:1–12 (2017)Google Scholar
  30. S. Holm, V. Pandey, Wave propagation in marine sediments expressed by fractional wave and diffusion equations, in Proceedings of the IEEE China Ocean Acoustics Symposium (COA2016) (2016)Google Scholar
  31. S. Holm, R. Sinkus, A unifying fractional wave equation for compressional and shear waves. J. Acoust. Soc. Am. 127, 542–548 (2010)ADSCrossRefGoogle Scholar
  32. A. Hosokawa, T. Otani, Ultrasonic wave propagation in bovine cancellous bone. J. Acoust. Soc. Am. 101(1), 558–562 (1997)ADSCrossRefGoogle Scholar
  33. J.M. Hovem, Marine Acoustics: The Physics of Sound in Underwater Environments (Peninsula publishing, Los Altos, CA, 2012)Google Scholar
  34. M. Kimura, Frame bulk modulus of porous granular marine sediments. J. Acoust. Soc. Am. 120(2), 699–710 (2006)ADSCrossRefGoogle Scholar
  35. M. Kimura, Experimental validation and applications of a modified gap stiffness model for granular marine sediments. J. Acoust. Soc. Am. 123(5), 2542–2552 (2008)ADSCrossRefGoogle Scholar
  36. M. Kimura, Shear wave speed dispersion and attenuation in granular marine sediments. J. Acoust. Soc. Am. 134(1), 144–155 (2013)ADSCrossRefGoogle Scholar
  37. M.M. Meerschaert, A. Sikorskii, Stochastic models for fractional calculus, vol. 43 (Walter de Gruyter, Berlin, 2012)zbMATHGoogle Scholar
  38. W.F. Murphy III, K.W. Winkler, R.L. Kleinberg, Acoustic relaxation in sedimentary rocks: dependence on grain contacts and fluid saturation. Geophysics 51(3), 757–766 (1986)ADSCrossRefGoogle Scholar
  39. T. Nagashima, N. Tamaki, S. Matsumoto, B. Horwitz, Y. Seguchi, Biomechanics of hydrocephalus: A new theoretical model. Neurosurg 21(6), 898–904 (1987)CrossRefGoogle Scholar
  40. V. Pandey, S. Holm, Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations. J. Acoust. Soc. Am. 140, 4225–4236 (2016a)ADSCrossRefGoogle Scholar
  41. V. Pandey, S. Holm, Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity. Phys. Rev. E 94, 032606-1–6 (2016b)Google Scholar
  42. T.J. Plona, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett. 36(4), 259–261 (1980)ADSCrossRefGoogle Scholar
  43. P.N. Sahay, On the Biot slow S-wave. Geophysics 73(4), N19–N33 (2008)ADSCrossRefGoogle Scholar
  44. R.D. Stoll, Acoustic waves in saturated sediments, in Physics of Sound in Marine Sediments (Springer, Berlin, 1974), pp. 19–39CrossRefGoogle Scholar
  45. R.D. Stoll, Acoustic waves in ocean sediments. Geophysics 42(4), 715–725 (1977)ADSCrossRefGoogle Scholar
  46. R.D. Stoll, G.M. Bryan, Wave attenuation in saturated sediments. J. Acoust. Soc. Am. 47(5B), 1440–1447 (1970)ADSCrossRefGoogle Scholar
  47. N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction, (Springer, Berlin, 1989). Reprinted in 2012CrossRefGoogle Scholar
  48. A. Turgut, An investigation of causality for Biot models by using Kramers-Krönig relations, in Shear Waves in Marine Sediments (Springer, Berlin, 1991), pp. 21–28Google Scholar
  49. C. Zwikker, C.W. Kosten, Sound Absorbing Materials (Elsevier, Amsterdam, 1949)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations