Advertisement

Justification for Power Laws and Fractional Models

  • Sverre HolmEmail author
Chapter

Abstract

In previous chapters it has been shown that the standard linear viscoelastic models can be generalized to their fractional counterparts. It has also been demonstrated that the fractional Zener, Kelvin–Voigt, Maxwell, and Newtonian models all satisfy physical criteria such as passivity and causality. These models have temporal responses that are characterized by power laws, either exactly or asymptotically, and this corresponds to observed temporal characteristics in many media. The character of the fractional derivative operator is also such that it describes temporal memory in the media.

References

  1. N.H. Abel, Auflösung einer mechanischen Aufgabe (Resolution of a mechanical problem). J. Reine. Angew. Math. 1, 153–157 (1826)MathSciNetCrossRefGoogle Scholar
  2. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh, G.H. Koenderink, Molecular motors robustly drive active gels to a critically connected state. Nat. Phys. 9(9), 591 (2013)CrossRefGoogle Scholar
  3. R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)ADSCrossRefGoogle Scholar
  4. A.R. Bausch, F. Ziemann, A.A. Boulbitch, K. Jacobson, E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75(4), 2038–2049 (1998)CrossRefGoogle Scholar
  5. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)ADSMathSciNetCrossRefGoogle Scholar
  6. M.A. Biot, Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am. 34(9A), 1254–1264 (1962)ADSMathSciNetCrossRefGoogle Scholar
  7. D.T. Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000)Google Scholar
  8. T. Bochud, D. Challet, Optimal approximations of power laws with exponentials: application to volatility models with long memory. Quant. Financ. 7(6), 585–589 (2007)MathSciNetCrossRefGoogle Scholar
  9. M.J. Buckingham, Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments. J. Acoust. Soc. Am. 108(6), 2796–2815 (2000)ADSCrossRefGoogle Scholar
  10. M.J. Buckingham, On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments. J. Acoust. Soc. Am. 122(3), 1486–1501 (2007)ADSCrossRefGoogle Scholar
  11. M. Caputo, F. Mainardi, Linear models of dissipation in anelastic solids. La Riv. del Nuovo Cimento (1971–1977) 1(2), 161–198 (1971)ADSCrossRefGoogle Scholar
  12. R.P. Chhabra, Non-Newtonian fluids: An introduction, Rheology of Complex Fluids (Springer, New York, 2010), pp. 3–34CrossRefGoogle Scholar
  13. N.P. Chotiros, M.J. Isakson, Shear wave attenuation and micro-fluidics in water-saturated sand and glass beads. J. Acoust. Soc. Am. 135(6), 3264–3279 (2014)ADSCrossRefGoogle Scholar
  14. I. Colombaro, A. Giusti, F. Mainardi, A class of linear viscoelastic models based on Bessel functions. Meccanica 52(4–5), 825–832 (2017a)MathSciNetCrossRefGoogle Scholar
  15. I. Colombaro, A. Giusti, F. Mainardi, A one parameter class of fractional Maxwell-like models, in AIP Conference Proceedings, vol. 1836 (AIP Publishing, 2017b), pp. 020003-1–6Google Scholar
  16. J.M. Cormack, M.F. Hamilton, Overturning of nonlinear compressional and shear waves subject to power-law attenuation or relaxation. Wave Motion 85, 18–33 (2019)MathSciNetCrossRefGoogle Scholar
  17. M. Enelund, P. Olsson, Time domain formulation of the Biot poroelastic theory using fractional calculus. IFAC Proc. 39(11), 391–396 (2010)CrossRefGoogle Scholar
  18. B. Fabry, G.N. Maksym, J.P. Butler, M. Glogauer, D. Navajas, J.J. Fredberg, Scaling the microrheology of living cells. Phys. Rev. Lett. 87(14), 148102 (2001)ADSCrossRefGoogle Scholar
  19. R. Fåhræus, T. Lindqvist, The viscosity of the blood in narrow capillary tubes. Am. J. Physiol.-Leg. Content 96(3), 562–568 (1931)CrossRefGoogle Scholar
  20. M. Fellah, Z.E.A. Fellah, F. Mitri, E. Ogam, C. Depollier, Transient ultrasound propagation in porous media using Biot theory and fractional calculus: Application to human cancellous bone. J. Acoust. Soc. Am. 133(4), 1867–1881 (2013)ADSCrossRefGoogle Scholar
  21. Z.E.A. Fellah, C. Depollier, Transient acoustic wave propagation in rigid porous media: A time-domain approach. J. Acoust. Soc. Am. 107(2), 683–688 (2000)Google Scholar
  22. J. Frame, An approximation to the quotient of gamma functions. Am. Math. Mon. 56(8), 529–535 (1949)MathSciNetzbMATHGoogle Scholar
  23. A. Giusti, F. Mainardi, A dynamic viscoelastic analogy for fluid-filled elastic tubes. Meccanica 51(10), 2321–2330 (2016)MathSciNetCrossRefGoogle Scholar
  24. B. Gross, On creep and relaxation. J. Appl. Phys. 18(2), 212–221 (1947)ADSMathSciNetCrossRefGoogle Scholar
  25. M.F. Hamilton, D.T. Blackstock, On the coefficient of nonlinearity \(\beta \) in nonlinear acoustics. J. Acoust. Soc. Am. 83(1), 74–77 (1988)Google Scholar
  26. M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics (Acoustical Society of America Press, New York, 2008)Google Scholar
  27. N. Heymans, J.-C. Bauwens, Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta 33(3), 210–219 (1994)CrossRefGoogle Scholar
  28. S. Holm, Capacitor soakage, dielectric absorption, fractional derivative capacitor (2013), https://www.youtube.com/watch?v=vhHog_yCQ4Q. Accessed 25 June 2018
  29. S. Holm, S.P. Näsholm, A causal and fractional all-frequency wave equation for lossy media. J. Acoust. Soc. Am. 130(4), 2195–2202 (2011)ADSCrossRefGoogle Scholar
  30. J.M. Hovem, G.D. Ingram, Viscous attenuation of sound in saturated sand. J. Acoust. Soc. Am. 66, 1807–1812 (1979)ADSCrossRefGoogle Scholar
  31. D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379–402 (1987)ADSCrossRefGoogle Scholar
  32. J. Kappler, S. Shrivastava, M.F. Schneider, R.R. Netz, Nonlinear fractional waves at elastic interfaces. Phys. Rev. Fluids 2(11), 114804 (2017)ADSCrossRefGoogle Scholar
  33. J.F. Kelly, R.J. McGough, Fractal ladder models and power law wave equations. J. Acoust. Soc. Am. 126(4), 2072–2081 (2009)ADSCrossRefGoogle Scholar
  34. M. Kimura, Frame bulk modulus of porous granular marine sediments. J. Acoust. Soc. Am. 120(2), 699–710 (2006)ADSCrossRefGoogle Scholar
  35. M. Kimura, Experimental validation and applications of a modified gap stiffness model for granular marine sediments. J. Acoust. Soc. Am. 123(5), 2542–2552 (2008)ADSCrossRefGoogle Scholar
  36. P. Kollmannsberger, B. Fabry, Active soft glassy rheology of adherent cells. Soft Matter 5(9), 1771–1774 (2009)ADSCrossRefGoogle Scholar
  37. P. Kollmannsberger, B. Fabry, Linear and nonlinear rheology of living cells. Annu. Rev. Mater. Res. 41, 75–97 (2011)ADSCrossRefGoogle Scholar
  38. F. Mainardi, Fractional relaxation in anelastic solids. J. Alloy. Compd. 211, 534–538 (1994)CrossRefGoogle Scholar
  39. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelesticity: An Introduction to Mathematical Models (Imperial College Press, London, 2010)CrossRefGoogle Scholar
  40. F. Mainardi, On some properties of the Mittag-Leffler function \({E}_\alpha (- t^\alpha )\), completely monotone for \(t> 0\) with \(0< \alpha < 1\). Discret. Contin. Dyn. Syst. Ser. B 2267–2278 (2014)Google Scholar
  41. A. Metzner, Non-Newtonian technology: Fluid mechanics, mixing, and heat transfer. Adv. Chem. Eng. 1, 77–153 (1956)Google Scholar
  42. W.F. Murphy III, K.W. Winkler, R.L. Kleinberg, Acoustic relaxation in sedimentary rocks: Dependence on grain contacts and fluid saturation. Geophysics 51(3), 757–766 (1986)ADSCrossRefGoogle Scholar
  43. A.I. Nachman, J.F. Smith III, R.C. Waag, An equation for acoustic propagation in inhomogeneous media with relaxation losses. J. Acoust. Soc. Am. 88, 1584–1595 (1990)ADSCrossRefGoogle Scholar
  44. S.P. Näsholm, Model-based discrete relaxation process representation of band-limited power-law attenuation. J. Acoust. Soc. Am. 133(3), 1742–1750 (2013)ADSCrossRefGoogle Scholar
  45. S.P. Näsholm, S. Holm, Linking multiple relaxation, power-law attenuation, and fractional wave equations. J. Acoust. Soc. Am. 130(5), 3038–3045 (2011)ADSCrossRefGoogle Scholar
  46. S.P. Näsholm, S. Holm, On a fractional Zener elastic wave equation. Fract. Calc. Appl. Anal. 16, 26–50 (2013)MathSciNetCrossRefGoogle Scholar
  47. K.B. Oldham, J. Spanier, The Fractional Calculus. Mathematics in Science and Engineering, vol. 111 (Academic, New York, 1974)Google Scholar
  48. V. Pandey, S. Holm, Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity. Phys. Rev. E 94, 032606-1–6 (2016)Google Scholar
  49. K.J. Parker, A microchannel flow model for soft tissue elasticity. Phys. Med. Biol. 59(15), 4443–4457 (2014a)ADSCrossRefGoogle Scholar
  50. K.J. Parker, Real and causal hysteresis elements. J. Acoust. Soc. Am. 135(6), 3381–3389 (2014b)ADSCrossRefGoogle Scholar
  51. H. Pauly, H. Schwan, Mechanism of absorption of ultrasound in liver tissue. J. Acoust. Soc. Am. 50(2B), 692–699 (1971)ADSCrossRefGoogle Scholar
  52. R.A. Pease, Understand capacitor soakage to optimize analog systems, Electronic Circuits, Systems and Standards (Elsevier, Amsterdam, 1991), pp. 158–162CrossRefGoogle Scholar
  53. F. Prieur, S. Holm, Nonlinear acoustic wave equations with fractional loss operators. J. Acoust. Soc. Am. 130(3), 1125–1132 (2011)ADSCrossRefGoogle Scholar
  54. F. Prieur, G. Vilenskiy, S. Holm, A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators. J. Acoust. Soc. Am. 132(4), 2169–2172 (2012)ADSCrossRefGoogle Scholar
  55. P.E. Rouse Jr., A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21(7), 1272–1280 (1953)ADSCrossRefGoogle Scholar
  56. P.E. Rouse Jr., A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. II. A first-order mechanical thermodynamic property. J. Chem. Phys. 108(11), 4628–4633 (1998)ADSCrossRefGoogle Scholar
  57. H. Schiessel, A. Blumen, Hierarchical analogues to fractional relaxation equations. J. Phys. A 26(19), 5057–5069 (1993)ADSCrossRefGoogle Scholar
  58. H. Schiessel, C. Friedrich, A. Blumen, Applications to problems in polymer physics and rheology, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000), pp. 331–376CrossRefGoogle Scholar
  59. M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Courier Corporation, 2009). Republication of 1991 editionGoogle Scholar
  60. Z.L. Shen, H. Kahn, R. Ballarini, S.J. Eppell, Viscoelastic properties of isolated collagen fibrils. Biophys. J. 100(12), 3008–3015 (2011)ADSCrossRefGoogle Scholar
  61. I.M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Phys. Today 55(11), 48–54 (2002)CrossRefGoogle Scholar
  62. P. Sollich, Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E 58(1), 738 (1998)ADSCrossRefGoogle Scholar
  63. R.D. Stoll, G.M. Bryan, Wave attenuation in saturated sediments. J. Acoust. Soc. Am. 47(5B), 1440–1447 (1970)ADSCrossRefGoogle Scholar
  64. M. Tabei, T.D. Mast, R.C. Waag, Simulation of ultrasonic focus aberration and correction through human tissue. J. Acoust. Soc. Am. 113(2), 1166–1176 (2003)ADSCrossRefGoogle Scholar
  65. P.J. Torvik, R.L. Bagley, On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51(2), 294–298 (1984)ADSCrossRefGoogle Scholar
  66. N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction (Springer, Berlin, 1989). Reprinted in 2012CrossRefGoogle Scholar
  67. S. Westerlund, L. Ekstam, Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)CrossRefGoogle Scholar
  68. D.K. Wilson, Relaxation-matched modeling of propagation through porous media, including fractal pore structure. J. Acoust. Soc. Am. 94(2), 1136–1145 (1993)ADSMathSciNetCrossRefGoogle Scholar
  69. D.K. Wilson, Simple, relaxational models for the acoustical properties of porous media. Appl. Acoust. 50(3), 171–188 (1997)CrossRefGoogle Scholar
  70. J.R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127(3), 553–563 (1955)CrossRefGoogle Scholar
  71. X. Yang, R.O. Cleveland, Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. J. Acoust. Soc. Am. 117, 113–123 (2005)ADSCrossRefGoogle Scholar
  72. X. Yang, W. Chen, H. Sun, Fractional time-dependent apparent viscosity model for semisolid foodstuffs. Mech. Time-Depend. Mater. 1–10 (2017)Google Scholar
  73. D. Yin, W. Zhang, C. Cheng, Y. Li, Fractional time-dependent Bingham model for muddy clay. J. Non-Newton. Fluid Mech. 187, 32–35 (2012)CrossRefGoogle Scholar
  74. H. Zhou, H. Yi, L. Mishnaevsky, R. Wang, Z. Duan, Q. Chen, Deformation analysis of polymers composites: rheological model involving time-based fractional derivative. Mech. Time-Depend. Mater. 21(2), 151–161 (2017)ADSCrossRefGoogle Scholar
  75. B.H. Zimm, R.W. Kilb, Dynamics of branched polymer molecules in dilute solution. J. Polym. Sci. A 37(131), 19–42 (1959)ADSGoogle Scholar
  76. C. Zwikker, C.W. Kosten, Sound Absorbing Materials (Elsevier, New York, 1949)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations