Absorption Mechanisms and Physical Constraints

  • Sverre HolmEmail author


The spring–damper models for viscosity and relaxation described in Chap.  2 can be justified in processes taking place at length scales which may be much smaller than the wavelength, often at the molecular level. This is especially so in the acoustics case. In Sect.  2.6.3 specific examples of processes were given due to \(H_2O\), \(MgSO_4\), and \(B(OH)_3\) for seawater as well as \(O_2\) and \(N_2\) for air. This chapter begins with a more detailed account of these processes starting with the simplest monatomic and polyatomic gases, simple and associated liquids, and finally chemical solutions.


  1. B. Angelsen, Ultrasonic Imaging: Waves, Signals, and Signal Processing, vol. 1–2 (Emantec AS, Trondheim, 2000)Google Scholar
  2. P. Ball, Water: water-an enduring mystery. Nature 452(7185), 291–292 (2008)ADSCrossRefGoogle Scholar
  3. A.B. Bhatia, Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids, and Solids (Courier Dover Publications, New York, 1967)Google Scholar
  4. D.T. Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000)Google Scholar
  5. M.J. Buckingham, Causality, Stokes’ wave equation, and acoustic pulse propagation in a viscous fluid. Phys. Rev. E 72(2), 026610 (2005)Google Scholar
  6. M.J. Buckingham, On the transient solutions of three acoustic wave equations: van Wijngaarden’s equation, Stokes’ equation and the time-dependent diffusion equation. J. Acoust. Soc. Am. 124, 1909 (2008)ADSCrossRefGoogle Scholar
  7. M.J. Buckingham, Wave-speed dispersion associated with an attenuation obeying a frequency power law. J. Acoust. Soc. Am. 138(5), 2871–2884 (2015)ADSCrossRefGoogle Scholar
  8. M.J. Buckingham, The dispersion formula and the green’s function associated with an attenuation obeying a frequency power law. J. Acoust. Soc. Am. 144(2), 755–765 (2018)Google Scholar
  9. K. Cheng, T. Fujii, Heat in history Isaac Newton and heat transfer. Heat Transf. Eng. 19(4), 9–21 (1998)ADSCrossRefGoogle Scholar
  10. L.B. Evans, H.E. Bass, L.C. Sutherland, Atmospheric absorption of sound: theoretical predictions. J. Acoust. Soc. Am. 51(5B), 1565–1575 (1972)ADSCrossRefGoogle Scholar
  11. C.L. Fefferman, Existence and smoothness of the Navier-Stokes equation, The Millennium Prize Problems (Clay Mathematics Institute, Cambridge, 2006), pp. 57–67Google Scholar
  12. L.S. García-Colín, R.M. Velasco, F.J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics. Phys. Rep. 465(4), 149–189 (2008)Google Scholar
  13. M.E. Gurtin, A.C. Pipkin, A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31(2), 113–126 (1968)ADSMathSciNetCrossRefGoogle Scholar
  14. L. Hall, The origin of ultrasonic absorption in water. Phys. Rev. 73(7), 775 (1948)ADSCrossRefGoogle Scholar
  15. A. Hanyga, Wave propagation in linear viscoelastic media with completely monotonic relaxation moduli. Wave Motion 50(5), 909–928 (2013)MathSciNetCrossRefGoogle Scholar
  16. A. Hanyga, Dispersion and attenuation for an acoustic wave equation consistent with viscoelasticity. J. Comput. Acoust. 22(03), 1450006-1–22 (2014)MathSciNetCrossRefGoogle Scholar
  17. S. Holm, M.B. Holm, Restrictions on wave equations for passive media. J. Acoust. Soc. Am. 142(4) (2017)Google Scholar
  18. S. Holm, S.P. Näsholm, Comparison of fractional wave equations for power law attenuation in ultrasound and elastography. Ultrasound. Med. Biol. 40(4), 695–703 (2014)CrossRefGoogle Scholar
  19. S. Jennings, The mean free path in air. J. Aerosol. Sci. 19(2), 159–166 (1988)ADSCrossRefGoogle Scholar
  20. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th edn. (Wiley, New York, 1999)Google Scholar
  21. R. Ludwig, Water: From clusters to the bulk. Angew. Chem. Int. Ed. 40(10), 1808–1827 (2001)CrossRefGoogle Scholar
  22. R.M. Lynden-Bell, S.C. Morris, J.D. Barrow, J.L. Finney, C. Harper, Water and Life: The Unique Properties of H2O (CRC Press, New York, 2010)Google Scholar
  23. J.J. Markham, R.T. Beyer, R.B. Lindsay, Absorption of sound in fluids. Rev. Mod. Phys. 23(4), 353–411 (1951)ADSMathSciNetCrossRefGoogle Scholar
  24. M. Matsumoto, S. Saito, I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416(6879), 409–413 (2002)ADSCrossRefGoogle Scholar
  25. J. Mobley, Simplified expressions of the subtracted Kramers-Kronig relations using the expanded forms applied to ultrasonic power-law systems. J. Acoust. Soc. Am. 127(1), 166–173 (2010)ADSCrossRefGoogle Scholar
  26. M. O’Donnell, E. Jaynes, J. Miller, Kramers-Kronig relationship between ultrasonic attenuation and phase velocity. J. Acoust. Soc. Am. 69, 696–701 (1981)ADSCrossRefGoogle Scholar
  27. S. Santucci, D. Fioretto, L. Comez, A. Gessini, C. Masciovecchio, Is there any fast sound in water? Phys. Rev. Lett. 97(22), 225701 (2006)Google Scholar
  28. M. Seredyńska, A. Hanyga, Relaxation, dispersion, attenuation, and finite propagation speed in viscoelastic media. J. Math. Phys. 51(9), 092901-1–16 (2010)ADSMathSciNetCrossRefGoogle Scholar
  29. N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction (Springer, Berlin, 1989). Reprinted in 2012CrossRefGoogle Scholar
  30. G. Verma, Ultrasonic absorption due to chemical relaxation in electrolytes. Rev. Mod. Phys. 31(4), 1052 (1959)ADSCrossRefGoogle Scholar
  31. K.R. Waters, J. Mobley, J.G. Miller, Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(5), 822–823 (2005)CrossRefGoogle Scholar
  32. R.L. Weaver, Y.H. Pao, Dispersion relations for linear wave propagation in homogeneous and inhomogeneous media. J. Math. Phys 22, 1909–1918 (1981)ADSMathSciNetCrossRefGoogle Scholar
  33. R.H. Winterton, Heat in history. Heat Transf. Eng. 22(5), 3–11 (2001)ADSCrossRefGoogle Scholar
  34. E. Yeager, F. Fisher, J. Miceli, R. Bressel, Origin of the low-frequency sound absorption in sea water. J. Acoust. Soc. Am. 53(6), 1705–1707 (1973)ADSCrossRefGoogle Scholar
  35. C. Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948)Google Scholar
  36. X. Zhao, R.J. McGough, Time-domain comparisons of power law attenuation in causal and noncausal time-fractional wave equations. J. Acoust. Soc. Am. 139(5), 3021–3031 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations