Advertisement

Classical Wave Equations

  • Sverre HolmEmail author
Chapter

Abstract

The aim of this chapter is to describe the conventional acoustic models in the framework of linear elasticity. The two main attenuation mechanisms are the viscous and the relaxation ones. It is shown that the viscous model derives from the Kelvin–Voigt spring–damper system, and that the relaxation model is based on the standard linear solid or Zener model. The multiple-relaxation model for seawater and air are also shown to be based on the Maxwell–Wiechert model, which is a generalization of the Zener model. This establishes the foundation for later generalization to fractional versions of the linear viscoelastic models.

References

  1. S. Abdalla, Low frequency dielectric properties of human blood. IEEE Trans. Nanobiosci. 10(2), 113–120 (2011)CrossRefGoogle Scholar
  2. M. Ainslie, J.G. McColm, A simplified formula for viscous and chemical absorption in sea water. J. Acoust. Soc. Am. 103(3), 1671–1672 (1998)ADSCrossRefGoogle Scholar
  3. F. Álvarez, R. Kuc, Dispersion relation for air via Kramers–Kronig analysis. J. Acoust. Soc. Am. 124, EL57–EL61 (2008)ADSCrossRefGoogle Scholar
  4. J.C. Bamber, Attenuation and absorption, in Physical Principles of Medical Ultrasonics, 2nd edn., ed. by C.R. Hill, J.C. Bamber, G.R. ter Haar (Wiley, UK, 2004), pp. 93–166. Chap. 4Google Scholar
  5. H.E. Bass, L.C. Sutherland, A.J. Zuckerwar, D.T. Blackstock, D.M. Hester, Atmospheric absorption of sound: Further developments. J. Acoust. Soc. Am. 97, 680–683 (1995)ADSCrossRefGoogle Scholar
  6. H .E. Bass, L .C. Sutherland, A .J. Zuckerwar, D .T. Blackstock, D .M. Hester, Erratum: Atmospheric absorption of sound: Further developments [J. Acoust. Soc. Am. 97, 680–683 (1995)]. J. Acoust. Soc. Am. 99, 1259 (1996)Google Scholar
  7. A.B. Bhatia, Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids, and Solids (Courier Dover Publications, 1967)Google Scholar
  8. D.T. Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000)Google Scholar
  9. D.T. Blackstock, Transient solution for sound radiated into a viscous fluid. J. Acoust. Soc. Am. 41(5), 1312–1319 (1967)ADSCrossRefGoogle Scholar
  10. D. Browning, R. Mellen, Attenuation of low-frequency sound in the sea: Recent results, in Progress in Underwater Acoustics (Springer, Berlin, 1987), pp. 403–410CrossRefGoogle Scholar
  11. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941)ADSCrossRefGoogle Scholar
  12. F.E. Davis, Effects of cable, loudspeaker, and amplifier interactions. J. Audio Eng. Soc. 39(6), 461–468 (1991)Google Scholar
  13. L.B. Evans, H.E. Bass, L.C. Sutherland, Atmospheric absorption of sound: theoretical predictions. J. Acoust. Soc. Am. 51(5B), 1565–1575 (1972)ADSCrossRefGoogle Scholar
  14. S. Gabriel, R. Lau, C. Gabriel, The dielectric properties of biological tissues: III. parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271 (1996)ADSCrossRefGoogle Scholar
  15. E.L. Hamilton, Attenuation of shear waves in marine sediments. J. Acoust. Soc. Am. 60(2), 334–338 (1976)ADSCrossRefGoogle Scholar
  16. M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics (Acoustical Society of America Press, New York, 2008)Google Scholar
  17. E.L. Hamilton, H.P. Bucker, D.L. Keir, J.A. Whitney, Velocities of compressional and shear waves in marine sediments determined in situ from a research submersible. J. Geophys. Res. 75(20), 4039–4049 (1970)ADSCrossRefGoogle Scholar
  18. S. Holm, O .B. Hovind, S. Rostad, R. Holm, Indoors data communications using airborne ultrasound, in IEEE International Conference on Acoustics, Speech, and Signal Processing (2005), pp. 957–960Google Scholar
  19. S. Holm, Ultrasound positioning based on time-of-flight and signal strength, in International Conference on Indoor Positioning and Indoor Navigation (IPIN) (IEEE, 2012), pp. 1–6Google Scholar
  20. S. Holm, S.P. Näsholm, A causal and fractional all-frequency wave equation for lossy media. J. Acoust. Soc. Am. 130(4), 2195–2202 (2011)ADSCrossRefGoogle Scholar
  21. S. Holm, S.P. Näsholm, Comparison of fractional wave equations for power law attenuation in ultrasound and elastography. Ultrasound. Med. Biol. 40(4), 695–703 (2014)CrossRefGoogle Scholar
  22. S. Holm, R. Sinkus, A unifying fractional wave equation for compressional and shear waves. J. Acoust. Soc. Am. 127, 542–548 (2010)ADSCrossRefGoogle Scholar
  23. G.P. Howell, C.L. Morfey, Frequency dependence of the speed of sound in air. J. Acoust. Soc. Am. 82, 375–376 (1987)ADSCrossRefGoogle Scholar
  24. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th edn. (Wiley-VCH, New York, 1999)Google Scholar
  25. D. Klatt, U. Hamhaber, P. Asbach, J. Braun, I. Sack, Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys. Med. Biol. 52(24), 7281–7294 (2007a)ADSCrossRefGoogle Scholar
  26. L. Knopoff, Q. Rev. Geophys. 2(4), 625–660 (1964)ADSCrossRefGoogle Scholar
  27. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelesticity: An Introduction to Mathematical Models (Imperial College Press, UK, 2010)Google Scholar
  28. F. Mainardi, Fractional relaxation in anelastic solids. J. Alloys Comput. 211, 534–538 (1994)CrossRefGoogle Scholar
  29. J.J. Markham, R.T. Beyer, R.B. Lindsay, Absorption of sound in fluids. Rev. Mod. Phys. 23(4), 353–411 (1951)ADSMathSciNetCrossRefGoogle Scholar
  30. J.C. Maxwell, IV. On the dynamical theory of gases. Philos. Trans. R. Soc. 157, 49–88 (1867)ADSCrossRefGoogle Scholar
  31. F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, The composition of standard seawater and the definition of the reference-composition salinity scale. Deep. Sea Res. Part I: Ocean. Res. Pap. 55(1), 50–72 (2008)ADSCrossRefGoogle Scholar
  32. C.L. Morfey, G.P. Howell, Speed of sound in air as a function of frequency and humidity. J. Acoust. Soc. Am. 68, 1525–1527 (1980)ADSCrossRefGoogle Scholar
  33. A.I. Nachman, J.F. Smith III, R.C. Waag, An equation for acoustic propagation in inhomogeneous media with relaxation losses. J. Acoust. Soc. Am. 88, 1584–1595 (1990)ADSCrossRefGoogle Scholar
  34. J. Peatross, M. Ware, Physics of Light and Optics (2015). https://optics.byu.edu/
  35. A. Pippard, The Cavendish laboratory. Eur. J. Phys. 8(4), 231 (1987)CrossRefGoogle Scholar
  36. G.G. Stokes, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Philos. Soc. 8 (part III), 287–319 (1845)Google Scholar
  37. N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction (Springer, Berlin, 1989). Reprinted in 2012CrossRefGoogle Scholar
  38. H. Tzschätzsch, J. Guo, F. Dittmann, S. Hirsch, E. Barnhill, K. Jöhrens, J. Braun, I. Sack, Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves. Med. Image Anal. 30, 1–10 (2016)CrossRefGoogle Scholar
  39. J.R. Wait, Relaxation phenomena and induced polarization. Geoexploration 22(2), 107–127 (1984)CrossRefGoogle Scholar
  40. C. Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations