Modular Design of Gymnotiform Undulating Fin

  • Van Dong Nguyen
  • Canh An Tien Pham
  • Van Hien Nguyen
  • Thien Phuc Tran
  • Tan Tien NguyenEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)


In the field of underwater robot, gymnotiform undulating fin inspired a number of research group over the world. A variety of design has been consequently created and developed with the design of multi-actuators. However, this type of design has the remarkable downsides. That is to say, the complex mechanical design and control, the deterioration of motors’ quality should not be underestimated. In this study, a modular design of gymnotiform undulating fin is created in order to avoid the aforementioned problem. This design aims to simplify the mechanism of the fin, reduce the number of actuators and the size of the fin. For this reason, a camshaft is designed to transmit momentum of a motor to all fin-rays in this model.


Gymnotiform Modular design Camshaft 


  1. 1.
    Nguyen, V.H., Pham, C.A.T., Nguyen, V.D., Kim, D.H., Nguyen, T.T.: A study on force generated by gymnotiform undulating fin. In: 15th International Conference on Ubiquitous Robots, pp. 247–252, 27–30 June 2018Google Scholar
  2. 2.
    Wang, S., Wang, Y., Wei, Q., Tan, M., Yu, J.: A bio-inspired robot with undulatory fins and its control methods. IEEEASME Trans. Mechatron. 22, 206–216 (2017)CrossRefGoogle Scholar
  3. 3.
    Liu, H., Curet, O.M.: Propulsive performance of an under-actuated robotic ribbon fin. Bioinspir. Biomim. 12, 036015 (2017)CrossRefGoogle Scholar
  4. 4.
    Nguyen, V.D., Phan, D.K., Pham, C.A.T., Kim, D.H., Dinh, V.T., Nguyen, T.T.: Study on Determining the Number of Fin-Rays of a Gymnotiform Undulating Fin Robot. Springer - Lecture Note in Electrical Engineering, vol. 465, pp. 745–752, 7–9 December 2017. (ISSN 1876-1100)Google Scholar
  5. 5.
    Sfakiotakis, M., Fasoulas, J., Gliva, R.: Dynamic modeling and experimental analysis of a two-ray undulatory fin robot. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 339–346. IEEE (2015)Google Scholar
  6. 6.
    Bale, R., Shirgaonkar, A.A., Neveln, I.D., Bhalla, A.P.S., MacIver, M.A., Patankar, N.A.: Separability of drag and thrust in undulatory animals and machines. Sci. Rep. 4 (2015)Google Scholar
  7. 7.
    Maddalena, L., Vergine, F., Crisanti, M.: Vortex dynamics studies in supersonic flow: merging of co-rotating streamwise vortices. Phys. Fluids 26, 046101 (2014)CrossRefGoogle Scholar
  8. 8.
    Neveln, I.D., Bai, Y., Snyder, J.B., Solberg, J.R., Curet, O.M., Lynch, K.M., MacIver, M.A.: Biomimetic and bio-inspired robotics in electric fish research. J. Exp. Biol. 216, 2501–2514 (2013)CrossRefGoogle Scholar
  9. 9.
    Yong-Hua, Z., Jian-Hui, H., Kin-Huat, L.: Numeric simulation on the performance of an undulating fin in the wake of a periodic oscillating plate. Int. J. Adv. Robot. Syst. 10, 352 (2013)CrossRefGoogle Scholar
  10. 10.
    Curet, O.M., Patankar, N.A., Lauder, G.V., MacIver, M.A.: Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspir. Biomim. 6, 026004 (2011)CrossRefGoogle Scholar
  11. 11.
    Peter, B., Ratnaweera, R., Fischer, W., Pradalier, C., Siegwart, R.Y.: Design and evaluation of a fin-based underwater propulsion system. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3751–3756. IEEE (2010)Google Scholar
  12. 12.
    Liu, F., Yang, C.-J., Lee, K.-M.: Hydrodynamic modeling of an undulating fin for robotic fish design. In: 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 55–60. IEEE (2010)Google Scholar
  13. 13.
    Chen, J., Hu, T., Lin, L., Xie, H., Shen, L.: Learning control for biomimetic undulating fins: an experimental study. J. Bionic Eng. 7, S191–S198 (2010)CrossRefGoogle Scholar
  14. 14.
    Zhou, H., Hu, T., Xie, H., Zhang, D., Shen, L.: Computational hydrodynamics and statistical modeling on biologically inspired undulating robotic fins: a two-dimensional study. J. Bionic Eng. 7, 66–76 (2010)CrossRefGoogle Scholar
  15. 15.
    Zhou, H., Hu, T., Xie, H., Zhang, D., Shen, L.: Computational and experimental study on dynamic behavior of underwater robots propelled by bionic undulating fins. Sci. China Technol. Sci. 53, 2966–2971 (2010)CrossRefGoogle Scholar
  16. 16.
    Hu, T., Shen, L., Low, K.H.: Bionic asymmetry: from amiiform fish to undulating robotic fins. Chin. Sci. Bull. 54, 562–568 (2009)CrossRefGoogle Scholar
  17. 17.
    Low, K.H.: Mechatronics and buoyancy implementation of robotic fish swimming with modular fin mechanisms. Proc. Inst. Mech. Eng. Part J. Syst. Control Eng. 221, 295–309 (2007)Google Scholar
  18. 18.
    Low, K.H.: Locomotion and depth control of robotic fish with modular undulating fins. Int. J. Autom. Comput. 3, 348–357 (2006)CrossRefGoogle Scholar
  19. 19.
    Epstein, M., Colgate, J.E., MacIver, M.A.: Generating thrust with a biologically-inspired robotic ribbon fin. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2412–2417. IEEE (2006)Google Scholar
  20. 20.
    Sfakiotakis, M., Fasoulas, J.: Development and experimental validation of a model for the membrane restoring torques in undulatory fin mechanisms. In: 2014 22nd Mediterranean Conference of Control and Automation (MED), pp. 1540–1546 (204)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Van Dong Nguyen
    • 1
  • Canh An Tien Pham
    • 1
  • Van Hien Nguyen
    • 2
  • Thien Phuc Tran
    • 1
  • Tan Tien Nguyen
    • 1
    Email author
  1. 1.Ho Chi Minh City University of Technology (HCMUT)Ho Chi Minh CityVietnam
  2. 2.PetroVietnam Camau Fertilizer Joint Stock CompanyCamau CityVietnam

Personalised recommendations