Advertisement

Validation the FEM Model of Asynchronous Motor by Analysis of External Radial Stray Field

  • Petr KacorEmail author
  • Petr Bernat
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)

Abstract

The paper deals with the validation of the FEM model of asynchronous motor by using the basic diagnostic method of an external magnetic field. The basic parameter to be analyzed is the induced voltage generated on the coil, which senses the external stray field of the asynchronous motor in its radial direction. Fast Fourier Transformation is used to evaluate the individual components of the spectrum according to common diagnostic procedures. Verification of the FEM model is performed by measuring the radial external field on a real asynchronous motor in the laboratory, where machine failures such as a broken rotor bar or eccentricity are also simulated. The electrical and mechanical parameters of the FEM model of motor correspond with the real machine in the laboratory.

Keywords

Asynchronous motor FFT FEM Radial stray field Rotor bar 

Notes

Acknowledgement

This research was supported by the SGS grant No. SP2018/61 from VSB - Technical University of Ostrava.

References

  1. 1.
    Henao, H., et al.: Trends in fault diagnosis for electrical machines: a review of diagnostic techniques. IEEE Ind. Electron. Mag. 8(2), 31–42 (2014).  https://doi.org/10.1109/MIE.2013.2287651CrossRefGoogle Scholar
  2. 2.
    Nandi, S., Toliyat, H.A.: Condition monitoring and fault diagnosis of electrical machines - a review. In: Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), Phoenix, AZ, vol. 1, pp. 197–204 (1999)  https://doi.org/10.1109/IAS.1999.799956
  3. 3.
    Dorrell, D.G., Thomson, W.T., Roach, S.: Analysis of airgap flux, current, and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors. IEEE Trans. Ind. Appl. 33(1), 24–34 (1997).  https://doi.org/10.1109/28.567073CrossRefGoogle Scholar
  4. 4.
    Romary, R., Corton, R., Thailly, D., Brudny, J.F.: Induction machine fault diagnosis using an external radial flux sensor. EPJ. Appl. Phys. 32(2), 125–132 (2005).  https://doi.org/10.1051/epjap:2005079CrossRefGoogle Scholar
  5. 5.
    Ceban, A., Pusca, R., Romary, R.: Study of rotor faults in induction motors using external magnetic field analysis. IEEE Trans. Industr. Electron. 59(5), 2082–2093 (2012).  https://doi.org/10.1109/TIE.2011.2163285CrossRefGoogle Scholar
  6. 6.
    Cuevas, M., Romary, R., Lecointe, J.P., Jacq, T.: Non-invasive detection of rotor short-circuit fault in synchronous machines by analysis of stray magnetic field and frame vibrations. IEEE Trans. Magn. 52(7), 1–4 (2016).  https://doi.org/10.1109/TMAG.2016.2514406CrossRefGoogle Scholar
  7. 7.
    Thomson, W.T., Fenger, M.: Current signature analysis to detect induction motor faults. IEEE Ind. Appl. Mag. 7(4), 26–34 (2001).  https://doi.org/10.1109/2943.930988CrossRefGoogle Scholar
  8. 8.
    Kindl, V., Kavalir, T., Pechanek, R.: Key construction aspects of low frequency wireless power transfer system using parallel resonance. In: 2015 17th European Conference on Power Electronics and Applications (EPE 2015 ECCE-Europe), Geneva, pp. 1–5 (2015).  https://doi.org/10.1109/EPE.2015.7311758
  9. 9.
    Keysan, O., Ertan, H.B.: Determination of rotor slot number of an induction motor using an external search coil. In: Facta Universitatis - Series: Electronics and Energetics, vol. 22, br. 2, pp. 227–234 (2009).  https://doi.org/10.2298/FUEE0902227K
  10. 10.
    Elhaija, W.A., Ghorbanian, V., Faiz, J., Nejadi-Koti, H.: Significance of rotor slots number on induction motor operation under broken bars. In: 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, pp. 1–8 (2017).  https://doi.org/10.1109/IEMDC.2017.8001862
  11. 11.
    Kindl, V., Hruska, K., Pechanek, R., Sobra, J., Skala, B.: The effect of space harmonic components in the air gap magnetic flux density on torque characteristic of a squirrel-cage induction machine. In: 2015 17th European Conference on Power Electronics and Applications (EPE 2015 ECCE-Europe), Geneva, pp. 1–5 (2015).  https://doi.org/10.1109/EPE.2015.7309221
  12. 12.
    Ferkova, Z., Kindl, V.: Influence of skewed squirrel cage rotor with intermediate ring on magnetic field of air gap in induction machine. Elektron. Elektrotechnika 23(1), 26–30 (2017).  https://doi.org/10.5755/j01.eee.23.1.17580CrossRefGoogle Scholar
  13. 13.
    Barzegaran, M.R., Mohammed, O.A.: Condition monitoring of electrical machines for extreme environments using electromagnetic stray fields. In: 2014 International Conference on Electrical Machines (ICEM), Berlin, pp. 2479–2485 (2014)  https://doi.org/10.1109/ICELMACH.2014.6960535
  14. 14.
    Gritli, Y.: Diagnosis and fault detection in electrical machines and drives based on advanced signal processing techniques. Dissertation Thesis, Department of Electrical, Electronics and Information Engineering “Guglielmo Marconi” (DEI) at University of Bologna, Bologna, ITALY, March 2014. http://www.die.ing.unibo.it/dottorato_it/Gritli/these-YASSER%20GRITLI.pdf. Accessed 24 July 2018
  15. 15.
    Ceban, A., Fireteanu V., Romary, R., Pusca, R., Taras, P.: Finite element diagnosis of rotor faults in induction motors based on low frequency harmonics of the near-magnetic field. In: 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, Bologna, pp. 192–198 (2011).  https://doi.org/10.1109/DEMPED.2011.6063623

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.VŠB-TU Ostrava, FEECSOstrava-PorubaCzech Republic

Personalised recommendations