The Rotor Initial Position Determination of the Hi-Speed Switch-Reluctance Electrical Generator for the Steam-Microturbine

  • Pavel G. KolpakhchyanEmail author
  • Vladimir I. Parshukov
  • Boris N. Lobov
  • Nikolay N. Efimov
  • Vadim V. Kopitza
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)


The article focuses on the control of the hi-speed switch-reluctance electrical machine, which works in conjunction with a steam microturbine. The use of sensorless control is efficient in the case under consideration. We described the use of test pulses in the electric generator phases to determine the rotor position. We study the matters of rotor position determination, the method accuracy and its implementation opportunity. The results of mathematical modeling of the initial rotor position determination are given.


Electric generator Switch-reluctance electrical machine Sensorless control Steam-turbine power system 



The article was published with financial support by the Ministry of Education and Science of the Russian Federation within the framework of the Federal Target Program “Research and development in the priority directions of the scientific-technological complex of Russia for 2014–2020” (No. 14.577.21.0260 Agreement on “Development of an autonomous mobile micro-energy complex functioning on the basis of technologies of processing of the industrial, municipal and agricultural wastes with power supply with the trigeneration mode”. The unique identifier of the applied scientific research and experimental developments (of the project) is RFMEFI57717X0260)


  1. 1.
    Monti, A., Pesch, D., Ellis, K., Mancarella, P.: Energy Positive Neighborhoods and Smart Energy Districts: Methods, Tools, and Experiences from the Field. Elsevier Science (2016).
  2. 2.
    Boicea, A.V., Chicco, G., Mancarella, P.: Optimal operation of a microturbine cluster with partial-load efficiency and emission characterization. In: 2009 IEEE Bucharest PowerTech, pp. 1–8 (2009)Google Scholar
  3. 3.
    Sioshansi, F.: Smart Grid: Integrating Renewable, Distributed & Efficient Energy. Academic Press (2012).
  4. 4.
    Gerada, D., Mebarki, A., Brown, N.L., Gerada, C., Cavagnino, A., Boglietti, A.: High-speed electrical machines: Technologies, trends, and developments. IEEE Trans. Ind. Electron. 61(6), 2946–2959 (2014)CrossRefGoogle Scholar
  5. 5.
    Kolpakhchyan, P.G., Shaikhiev, A.R., Kochin, A.E.: Sensorless control of thehigh-speed switched-reluctance generator for the steam turbine. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) Advances in Intelligent Systems and Computing, pp. 349–358. Springer International Publishing (2017).
  6. 6.
    Ye, J., Bilgin, B., Emadi, A.: An offline torque sharing function for torque ripple reduction in switched reluctance motor drives. IEEE Trans. Energy Convers. 30(2), 726–735 (2015). Scholar
  7. 7.
    Torrey, D.: Switched reluctance generators and their control. IEEE Trans. Ind. Electron. 49(1), 3–14 (2002). Scholar
  8. 8.
    Shao, B., Emadi, A.: A digital PWM control for switched reluctance motor drives. In: 2010 IEEE Vehicle Power and Propulsion Conference. IEEE (2010).
  9. 9.
    Uygun, D., Bal, G., Sefa, I.: Linear model of a novel 5-phase segment type switched reluctance motor. Elektronika ir Elektrotechnika 20(1), 3–7 (2014)CrossRefGoogle Scholar
  10. 10.
    Do, V., Ta, M.C.: Modeling, simulation and control of reluctance motor drives for high speed operation. In: 2009 IEEE Energy Conversion Congress and Exposition, pp. 1–6. IEEE (2009).
  11. 11.
    Cai, J., Deng, Z.: A position sensorless control of switched reluctance motors based on phase inductance slope. J. Power Electron. 13(2), 264–274 (2013). 2013 v13n2 264MathSciNetCrossRefGoogle Scholar
  12. 12.
    Borges, T., de Andrade, D., de Azevedo, H., Luciano, M.: Switched reluctance motor drive at high speeds, with control of current. In: 1997 IEEE International Electric Machines and Drives Conference Record, pp. TB1/12.1–TB1/12.3. IEEE (1997).
  13. 13.
    Ye, J., Bilgin, B., Emadi, A.: An extended-speed low-ripple torque control of switched reluctance motor drives. IEEE Trans. Power Electron. 30(3), 1457–1470 (2015). Scholar
  14. 14.
    Krna, P.: Sensorless control of the SRM using nonlinear observer. Ph.D. thesis, VSB Technical University of Ostrava (2013)Google Scholar
  15. 15.
    Kolpakhchyan, P., Shcherbakov, V., Kochin, A., Shaikhiev, A.: Sensorless control of a linear reciprocating switched-reluctance electric machine. Russ. Electr. Eng. 88(6), 366–371 (2017). Scholar
  16. 16.
    Chi, H.P., Lin, R.L., Chen, J.F.: Simplified flux-linkage model for switched-reluctance motors. IEE Proc. Electric Power Appl. 152(3), 577 (2005). Scholar
  17. 17.
    Fahimi, B., Suresh, G., Mahdavi, J., Ehsami, M.: A new approach to model switched reluctance motor drive application to dynamic performance prediction, control and design. In: PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No. 98CH36196), vol. 2, pp. 1061–1067. IEEE (1998).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Pavel G. Kolpakhchyan
    • 1
    Email author
  • Vladimir I. Parshukov
    • 2
  • Boris N. Lobov
    • 3
  • Nikolay N. Efimov
    • 3
  • Vadim V. Kopitza
    • 2
  1. 1.Rostov State Transport UniversityRostov-on-DonRussian Federation
  2. 2.ETC “DonEnergoMash” Ltd.Rostov-on-DonRussian Federation
  3. 3.Platov South-Russian State Polytechnic University (NPI)NovocherkasskRussian Federation

Personalised recommendations