Advertisement

Observer Based Control for Systems with Mismatched Uncertainties in Output Matrix

  • Van Van HuynhEmail author
  • Tran Thanh Phong
  • Bach Hoang Dinh
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)

Abstract

This paper presents a new analysis method to design an observer- based control for a class of mismatched uncertain time-delay system with mismatched uncertainties in the output matrix. One of the contributions is to estimate the current true value of the system state variables, avoiding the effect of the delayed and noised measurement output. Linear matrix inequality (LMI) approach is used to design the observer-based control. The control and observer gains matrices are characterized using the solution of the LMI existence condition.

Keywords

Mismatched uncertain time-delay systems Linear Matrix Inequalities (LMI) Observer-based control 

References

  1. 1.
    Lien, C.H.: Robust observer-based control of systems with state perturbations via LMI approach. IEEE Trans. Autom. Control 49(8), 1365–1370 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lien, C.H.: An efficient method to design robust observer-based control of uncertain linear systems. Appl. Math. Comput. 158, 29–44 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9(4), 706–710 (2004)CrossRefGoogle Scholar
  4. 4.
    Song, B., Hedrick, J.K.: Observer-based dynamic surface control for a class of nonlinear systems: an LMI approach. IEEE Trans. Autom. Control 49(11), 1995–2001 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yan, X.G., Sarah, K.S., Edwards, C.: Dynamic sliding mode control for a class of systems with mismatched uncertaint. Eur. J. Control 11, 1–20 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Choi, H.H., Ro, K.S.: LMI-based sliding-mode observer design method. In: IEE Proceedings on Control Theory and Applications, vol. 152, no. 1 (2005)Google Scholar
  7. 7.
    Yao, Y.X., Radun, A.V.: Proportional integral observer design for linear systems with time delay. IET Control Theor. Appl. 1(4), 887–892 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gassara, H., Hajjaji, A.E., Chaabane, M.: Observer-based robust H∞ reliable control for uncertain t–s fuzzy systems with state time delay. IEEE Trans. Fuzzy Syst. 18(6), 1027–1040 (2010)CrossRefGoogle Scholar
  9. 9.
    Wu, H.: A class of adaptive robust state observers with simpler structure for uncertain non-linear systems with time-varying delays. IET Control Theor. Appl. 7(2), 218–227 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ghanes, M., Leon, J.D., Barbot, J.-P.: Observer design for nonlinear systems under unknown time-varying delays. IEEE Trans. Autom. Control 58(6), 1529–1534 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wang, S., Jiang, Y.: On LMI conditions to design observer-based controllers for linear systems with parameter uncertainties. Automatica 49(12), 3700–3704 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, H.P., Tian, Y., Vasseur, V.: Piecewise continuous hybrid systems based observer design for linear systems with variable sampling periods and delay output. Signal Process. 114, 75–84 (2015)CrossRefGoogle Scholar
  13. 13.
    Zheng, G., Bejarano, F.J., Peruquetti, W.: Unknown input observer for linear time-delay systems. Automatica 61, 35–43 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Xia, Y., Jia, Y.: Robust sliding-mode control for uncertain time-delay systems: an LMI approach. IEEE Trans. Autom. Control 48(6), 1086–1092 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yan, X.G., Spurgeon, S.K., Edwards, C.: Static output feedback sliding mode control for time-varying delay systems with time-delayed nonlinear disturbances. Int. J. Robust Nonlinear Control 20(7), 777–788 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhang, L., Ning, Z., Zheng, W.X.: Observer-based control for piecewise-affine systems with both input and output quantization. IEEE Trans. Autom. Control 62(11), 5858–5865 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Van Van Huynh
    • 1
    Email author
  • Tran Thanh Phong
    • 2
  • Bach Hoang Dinh
    • 2
  1. 1.Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations