Advertisement

Temperature Dependence of Microstructure in Liquid Aluminosilicate

  • Mai Van Dung
  • Le The VinhEmail author
  • Vo Hoang Duy
  • Nguyen Kieu Tam
  • Tran Thanh Nam
  • Nguyen Manh Tuan
  • Truong Duc Quynh
  • Nguyen Van Yen
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)

Abstract

The structure of liquid Al2O3.2SiO2 (AS2) have been investigated by means molecular dynamics simulation with the Born-Mayer potential at different temperatures. The structural characteristics are analyzed via the partial radial distribution functions, coordination number, bond angle and bond length distributions. The results show that, the structure of the liquid aluminosilicate consist the basic structural units TOx (T = Al, Si; x = 3, 4, 5). The fraction of TOx units have a small change, in which the shape and size of the basic structural units are identical and do not depended on temperature. Calculations also show that calculated data agree well with the experimental ones.

Keywords

Structure Materials Temperature Molecular dynamics Spatial distribution 

Notes

Acknowledgment

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.05-2017.345.

References

  1. 1.
    Horbach, J., Kob, W.: Static and dynamic properties of a viscous silica melt. Phys. Rev. B 60, 3169–3181 (1999)CrossRefGoogle Scholar
  2. 2.
    Oligschleger, C.: Dynamics of SiO2 glasses. Phys. Rev. B 60, 3182–3193 (1999)CrossRefGoogle Scholar
  3. 3.
    Vollmayr-Lee, K., Zippelius, A.: Temperature-dependent defect dynamics in the network glass SiO2. Phys. Rev. E 88, 052145 (2013)CrossRefGoogle Scholar
  4. 4.
    Koziatek, P., Barrat, J.L., Rodney, D.: Short- and medium-range orders in as-quenched and deformed SiO2 glasses: an atomistic study. J. Non-Cryst. Solids 414, 7–15 (2015)CrossRefGoogle Scholar
  5. 5.
    Jin, W., Kalia, R.K., Vashishta, P., et al.: Structural transformation in densified silica glass: a molecular-dynamics study. Phys. Rev. B 50, 118–131 (1994)CrossRefGoogle Scholar
  6. 6.
    Sato, T., Funamori, N.: High-pressure structural transformation of SiO2 glass up to 100 Gpa. Phys. Rev. B 82, 184102 (2010)CrossRefGoogle Scholar
  7. 7.
    Trachenko, K., Dove, M.T.: Densification of silica glass under pressure. J. Phys.: Condens. Matter 14, 7449–7459 (2002)Google Scholar
  8. 8.
    Inamura, Y., Arai, M., Nakamura, M., et al.: Intermediate range structure and lowenergy dynamics of densified vitreous silica. J. Non-Cryst. Solids 293–295, 389–393 (2002)Google Scholar
  9. 9.
    Liang, Y., Miranda, C.R., Scandolo, S.: Mechanical strength and coordination defects in compressed silica glass: molecular dynamics simulations. Phys. Rev. B 75, 024205 (2007)CrossRefGoogle Scholar
  10. 10.
    Trachenko, K., Dove, M.T.: Compressibility, kinetics, and phase transition in pressurized amorphous silica. Phys. Rev. B 67, 064107 (2003)CrossRefGoogle Scholar
  11. 11.
    Gutierrez, G., Belonoshko, A.B., Ahuja, R., et al.: Structural properties of liquid Al2O3: a molecular dynamics study. Phys. Rev. E 61(3), 2723–2729 (2000)CrossRefGoogle Scholar
  12. 12.
    Hoang, V.V.: About an order of liquid–liquid phase transition in simulated liquid Al2O3. Phys. Lett. A 335, 439–443 (2005)CrossRefGoogle Scholar
  13. 13.
    Hemmati, M.: Structure of liquid Al2O3 from a computer simulation model. J. Phys. Chem. B 103, 4023–4028 (1999)CrossRefGoogle Scholar
  14. 14.
    Vashishta, P., Kalia, R.K., Nakano, A., et al.: Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. J. Appl. Phys. 103, 083504 (2008)CrossRefGoogle Scholar
  15. 15.
    Kushiro, I.: Changes in viscosity and structure of melt of NaA1SiO6 composition at high pressures. J. Geophys. Res. 81, 6347 (1976)CrossRefGoogle Scholar
  16. 16.
    Watson, E.B.: Calcium diffusion in a simple silicate melt to 30 kbar. Geochim. Cosmochim. Acta 43, 313 (1979)CrossRefGoogle Scholar
  17. 17.
    Watson, E.B.: Diffusion in magmas at depth in the earth: the effects of pressure and dissolved H2O. Earth Planet. Sci. Lett. 52, 291 (1981)CrossRefGoogle Scholar
  18. 18.
    Morikawa, H., Miwa, S.I., Miyake, M., Marumo, F.: Structural analysis of SiO2-Al2O3. J. Am. Ceram. Soc. 65, 78 (1982)CrossRefGoogle Scholar
  19. 19.
    Okuno, M., Zotov, N., Schmucker, M., Schneider, H.: Structure of SiO2–Al2O3 glasses: combined X-ray diffraction, IR and Raman studies. J. Non-Cryst. Solids 351, 1032 (2005)CrossRefGoogle Scholar
  20. 20.
    Hong, N.V., Yen, N.V., Lan, M.T., Hung, P.K.: Coordination and polyamorphism of aluminium silicate under high pressure: insight from analysis and visualization of molecular dynamics data. Can. J. Phys. 92, 1573–1580 (2014)CrossRefGoogle Scholar
  21. 21.
    Mai, L.T., Yen, N.V., Hong, N.V., Hung, P.K.: Visualisation based analysis of structure and dynamics of liquid aluminosilicate under compression. Phys. Chem. Liq. 55(1), 62–84 (2017)Google Scholar
  22. 22.
    Winkler, A., Horbach, J., Kob, W., et al.: Structure and diffusion in amorphous aluminum silicate: a molecular dynamics computer simulation. J. Chem. Phys. 120, 384–393 (2004)CrossRefGoogle Scholar
  23. 23.
    Hoang, V.V., Linh, N.N., Hung, N.H.: Structure and dynamics of liquid and amorphous Al2O3.2SiO2. Eur. Phys. J. Appl. Phys. 37, 111–118 (2007)CrossRefGoogle Scholar
  24. 24.
    Linh, N.N., Hoang, V.V.: Evolution of structure of liquid and amorphous Al2O3.2SiO2 nanoparticles upon cooling from the melts. World Sci. 2(4), 227–232 (2007)Google Scholar
  25. 25.
    Hoang, V.V.: Dynamical heterogeneity and diffusion in high-density Al2O3.2SiO2 melts. Physica B 400, 278–286 (2007)CrossRefGoogle Scholar
  26. 26.
    Hoang, V.V., Hung, N.H., Linh, N.N.: Liquid–liquid phase transition in simulated liquid Al2O3·2SiO2. Phys. Scr. 74, 697–701 (2006)CrossRefGoogle Scholar
  27. 27.
    Narayanan, B., Reimanis, I.E., Ciobanu, C.V.: Atomic-scale mechanism for pressure-induced amorphization of β-eucryptite. J. Appl. Phys. 114, 083520 (2013)CrossRefGoogle Scholar
  28. 28.
    Grandi, S., Costa, L.: Lanthanide-doped SiO2–Al2O3 aerogels and densified glasses. J. Non-Crystall. Solids 225, 141–145 (1998)CrossRefGoogle Scholar
  29. 29.
    Yang, Y., Takahashi, M., Abe, H., Kawazoe, Y.: Structural, electronic and optical properties of the Al2O3 doped SiO2: first principles calculations. Mater. Trans. 49(11), 2474–2479 (2008)CrossRefGoogle Scholar
  30. 30.
    Boe, P.T., Mcmillan, P.F.: Al and Si coordination in SiO2-A12O3 glasses and liquids: a study by NMR and IR spectroscopy and MD simulations. Chem. Geol. 96, 333–349 (1992)CrossRefGoogle Scholar
  31. 31.
    Binder, K., Horbach, J., Winkler, A., Kob, W.: Modeling glass materials. Ceram. Int. 31, 713–717 (2005)CrossRefGoogle Scholar
  32. 32.
    Shimoda, K., Saito, K.: Detailed structure elucidation of the blast furnace slag by molecular dynamics simulation. ISIJ Int. 47, 1275–1279 (2007)CrossRefGoogle Scholar
  33. 33.
    Zheng, K., Zhang, Z., Yang, F., Sridhar, S.: Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying A12O3/SiO2 ratios. ISIJ Int. 52(3), 342–349 (2012)CrossRefGoogle Scholar
  34. 34.
    Takei, T., Kameshima, Y., Yasumori, A., Okada, K.: Crystallization kinetics of mullite from A12O3– SiO2 glasses under non-isothermal conditions. J. Mater. Res. 15(1) (2000)Google Scholar
  35. 35.
    Pfleiderer, P., Horbach, J., Binder, K.: Structure and transport properties of amorphous aluminium silicates: computer simulation studies. Chem. Geol. 229, 186–197 (2006)CrossRefGoogle Scholar
  36. 36.
    Bauchy, M.: Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J. Chem. Phys. 141(2), 024507 (2014)CrossRefGoogle Scholar
  37. 37.
    Tossell, J.A., Cohen, R.E.: Calculation of the electric field gradients at tricluster-like O atoms in the polymorphs of Al2SiO5 and in aluminosilicate molecules: models for tricluster O atoms in glasses. J. Non-Cryst. Solids 286, 187–199 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mai Van Dung
    • 2
    • 4
  • Le The Vinh
    • 1
    Email author
  • Vo Hoang Duy
    • 1
  • Nguyen Kieu Tam
    • 1
  • Tran Thanh Nam
    • 1
  • Nguyen Manh Tuan
    • 2
  • Truong Duc Quynh
    • 3
  • Nguyen Van Yen
    • 5
  1. 1.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Institute of Applied Materials ScienceVietnam Academy of Science and TechnologyHo Chi Minh CityVietnam
  3. 3.Ho Chi Minh of University TransportHo Chi Minh CityVietnam
  4. 4.Thu Dau Mot UniversityThu Dau Mot CityVietnam
  5. 5.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam

Personalised recommendations