Advertisement

Geometrical Computational Method to Locate Hypocenter by Signal Readings from a Three Receivers

  • Alexander D. Krutas
  • Tatyana A. SmaglichenkoEmail author
  • Alexander Smaglichenko
  • Maria Sayankina
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)

Abstract

The information about hypocenters is essential for engineering tasks to predict a danger created by earthquakes. A nonlinearity in the earthquake location problem, a one-sided distribution of seismic receivers lead to a search of solutions improving hypocenter location accuracy. The original earthquake location method has been developed by using a physical and geometrical representation of the time difference between first signals from seismic waves registered by three different receivers. Data processing is performed applying algorithms of a computational geometry. The solution error is formulated in terms of an analytical geometry. Thus the method differs from traditional approaches, which are based on a standard statistic error. Taking into account the promising testing results we guess that the geometrical method can be as an additional computational technique or as a tool to get the trial hypocenter, which is an input parameter of standard software for hypocenter determining.

Keywords

Hypocenter location Calculating geometry Local earthquake origin time 

Notes

Acknowledgement

We thank the staff of the Icelandic Meteorological Office and University of Iceland, Reykjavik for providing us with the data of local earthquakes.

Co-authors will be forever grateful to the main author of this article Alexander D. Krutas, father and grandfather, who tragically died because of car accident on the 24th of November 2015 in Alushta city, Crimea.

References

  1. 1.
    Rognvaldsson, S.T., Slunga, R.: Single and joint fault plane solutions for microearthquakes in south Iceland. Tectonophysics 273, 73–86 (1994)CrossRefGoogle Scholar
  2. 2.
    Got, J.L., Frechet, J., Klein, F.W.: Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. J. Geophys. Res. 99, 15375–15386 (1996)CrossRefGoogle Scholar
  3. 3.
    Shearer, P.M.: Improving local earthquake locations using the L1 norm and waveform cross-correlation: application to the Whittier, Narrows, aftershock sequence. J. Geophys. Res. 102, 8269–8283 (1997)CrossRefGoogle Scholar
  4. 4.
    Rubin, A.M., Gillard, D., Got, G.L.: Streaks of microearthquakes along creeping faults. Nature 400, 635–641 (1999)CrossRefGoogle Scholar
  5. 5.
    Waldhauser, F., Ellsworth, W.L.: A double-difference earthquake location algorithm: method and application to the Northern Hayward fault, California. Bull. Seismol. Soc. Am. 90(6), 1353–1368 (2000)CrossRefGoogle Scholar
  6. 6.
    Eberhart-Phillips, D.: Local earthquake tomography: earthquake source regions. In: Iyer, H.M., Hirahara, K. (eds.) Seismic Tomography: Theory and Practice, pp. 613–643. Chapman and Hall, New York (1993)Google Scholar
  7. 7.
    Zhang, H., Thurber, C.H.: Double-difference tomography: the method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am. 93, 1875–1889 (2003)CrossRefGoogle Scholar
  8. 8.
    Benz, H.M., Chouet, B.A., Dawson, P.B., Lahr, J.C., Page, R.A., Hole, J.A.: Three-dimensional P and S wave velocity structure of redoubt volcano, Alaska. J. Geophys. Res. 101, 8111–8128 (1996)CrossRefGoogle Scholar
  9. 9.
    Wu, H., Lees, J.M.: Three-dimensional P- and S-wave velocity structures of the Coso geothermal area, California, from microseismic travel time data. J. Geophys. Res. 104, 13217–13233 (1999)CrossRefGoogle Scholar
  10. 10.
    Smaglichenko, T.A., Horiuchi, S., Takai, K.: A differentiated approach to the seismic tomography problem: method, testing and application to the Western Nagano fault area (Japan). Int. J. Appl. Earth Obs. Geoinf. 16, 27–41 (2012)CrossRefGoogle Scholar
  11. 11.
    Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(43–71), 195–209 (1982)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Smaglichenko, T.A., Nikolaev, A.V., Horiuchi, S., Hasegawa, A.: The method for consecutive subtraction of selected anomalies: the estimated crustal velocity structure in the 1996 Onikobe (M = 5.9) earthquake area, northeastern Japan. Geophys. J. Int. 153, 627–644 (2003)CrossRefGoogle Scholar
  13. 13.
    Smaglichenko, T.A.: Modification of Gaussian elimination for the complex system of seismic observations. Complex Syst. (Journal) 20(3), 229–241 (2012)MathSciNetGoogle Scholar
  14. 14.
    Geiger, L.: Herdbestimmung bei Erdbeben aus den Ankunftszeiten. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Math. Phys. Klasse 1910, 331–349 (1910)zbMATHGoogle Scholar
  15. 15.
    Lee, W.H.K., Lahr, J.C.: HYPO71 (revised): a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. U.S. Geological Survey Open-File Report (1975)Google Scholar
  16. 16.
    Lahr, J.C.: HYPOELLIPSE: a computer program for determining local earthquake hypocentral parameters, magnitude and first motion pattern. U.S. Geological Survey Open-File Report (1980)Google Scholar
  17. 17.
    Klein, F.W.: User’s Guide to Hypoinverse-2000, a Fortran program to solve for earthquake locations and magnitudes. U.S. Geological Survey Open-File Report (2002)Google Scholar
  18. 18.
    Lienert, B.R.E., Havskov, J.: A computer program for locating earthquakes both locally and globally. Seismol. Res. Lett. 66, 26–36 (1995)CrossRefGoogle Scholar
  19. 19.
    Havskov, J., Ottemoller L.: SEISAN: the earthquake analysis software, Version 8.0 preliminary. University of Bergen (2003)Google Scholar
  20. 20.
    Dost, B., Zednik, J., Havskov, J., et al.: Seismic data formats, archival and Exchange. In: Bormann, P. (ed.) New Manual of Seismological Observatory Practice (NMSOP-2). GeoForschungsZentrum, Potsdam (2012). Chap. 10, http://bib.telegrafenberg.de/publizieren/vertrieb/nmsop/Google Scholar
  21. 21.
    Horiuchi, S., Negishi, H., Abe, K., Kamimura, A., Fujinawa, Y.: An automatic processing system for broadcasting earthquake alarms. Bull. Seismol. Soc. Am. 95(2), 708–718 (2005)CrossRefGoogle Scholar
  22. 22.
    Lee, W.H.K., Stewart, S.W.: Principles and Applications of Microearthquake Networks. Academic Press, New York (1981)Google Scholar
  23. 23.
    Savarensky, E.F.: Seismic Waves. Mir Publishers, Moscow (1975)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alexander D. Krutas
    • 1
  • Tatyana A. Smaglichenko
    • 2
    Email author
  • Alexander Smaglichenko
    • 3
    • 4
  • Maria Sayankina
    • 2
  1. 1.AlushtaRussia
  2. 2.Research Oil and Gas Institute, Russian Academy of SciencesMoscowRussia
  3. 3.V.A. Trapeznikov Institute of Control Sciences, Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Seismology and GeodynamicsV.I. Vernadsky Crimean Federal UniversitySimferopolRussia

Personalised recommendations