Immunohistochemistry and Molecular Biology in Transbronchial Cryobiopsies

  • Marco ChilosiEmail author
  • Lisa Marcolini
  • Anna Caliò
  • Venerino Poletti


Immunohistochemical analyses have an important role in lung pathology, especially in lung cancer diagnosis and prognostication. In interstitial lung pathology, the use of immunohistochemical markers is limited, although this robust methodology has provided significant data on the pathogenic features of several diseases, including IPF. After the introduction of cryobiopsy, this in situ “proteomic” analysis can be more easily and frequently applied in order to provide new insights in the diseases’ pathogenesis, as well as to discover and validate new diagnostic markers to be utilized in clinical practice. In this review we describe a variety of immunohistochemical markers that can provide ancillary information in both lung cancer and nonneoplastic lung pathology, providing information for an economic and informative use of this technology.


Cryobiopsy Lung pathology Immunohistochemistry Lung cancer Interstitial lung diseases IPF Molecular pathology 


  1. 1.
    Khan J, Pritchard CC, Martins RG. Tissue is the issue for diagnosis of EGFR T790M mutation. J Thorac Oncol. 2016;11:e91–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Kaufmann O, Dietel M. Thyroid transcription factor-1 is the superior immunohistochemical marker for pulmonary adenocarcinomas and large cell carcinomas compared to surfactant proteins A and B. Histopathology. 2000;36:8–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Kargi A, Gurel D, Tuna B. The diagnostic value of TTF-1, CK 5/6, and p63 immunostaining in classification of lung carcinomas. Appl Immunohistochem Mol Morphol. 2007;15:415–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Koivunen JP, Mermel C, Zejnullahu K, et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008;14:4275–83.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Aguiar PN Jr, De Mello RA, Hall P, Tadokoro H, Lima Lopes G. PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data. Immunotherapy. 2017;9:499–506.PubMedCrossRefGoogle Scholar
  6. 6.
    Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Caliò A, et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One. 2015;10:e0130142.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Huang CL, Taki T, Adachi M, Konishi T, Higashiyama M, Kinoshita M, et al. Mutations of p53 and K-ras genes as prognostic factors for non-small cell lung cancer. Int J Oncol. 1998;12:553–63.PubMedGoogle Scholar
  8. 8.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.PubMedCrossRefGoogle Scholar
  9. 9.
    Marchetti A, Martella C, Felicioni L, Barassi F, Salvatore S, Chella A, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol. 2005;23:857–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Pelosi G, Fabbri A, Bianchi F, Maisonneuve P, Rossi G, Barbareschi M, et al. ΔNp63 (p40) and thyroid transcription factor-1 immunoreactivity on small biopsies or cellblocks for typing non-small cell lung cancer: a novel two-hit, sparing-material approach. J Thorac Oncol. 2012;7:281–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Doxtader EE, Cheng YW, Zhang Y. Molecular testing of non-small cell lung carcinoma diagnosed by endobronchial ultrasound-guided transbronchial fine-needle aspiration. Arch Pathol Lab Med. 2018.Google Scholar
  12. 12.
    Cai G, Wong R, Chhieng D, Levy GH, Gettinger SN, Herbst RS, et al. Identification of EGFR mutation, KRAS mutation, and ALK gene rearrangement in cytological specimens of primary and metastatic lung adenocarcinoma. Cancer Cytopathol. 2013;121:500–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Kondoh Y, Taniguchi H, Kitaichi M, Yokoi T, Johkoh T, Oishi T, et al. Acute exacerbation of interstitial pneumonia following surgical lung biopsy. Respir Med. 2006;100:1753–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Park IN, Kim DS, Shim TS, Lim CM, Lee SD, Koh Y, et al. Acute exacerbation of interstitial pneumonia other than idiopathic pulmonary fibrosis. Chest. 2007;132:214–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Babiak A, Hetzel J, Krishna G, Fritz P, Moeller P, Balli T, et al. Transbronchial cryobiopsy: a new tool for lung biopsies. Respiration. 2009;78:203–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Hetzel J, Hetzel M, Hasel C, Moeller P, Babiak A. Old meets modern: the use of traditional cryoprobes in the age of molecular biology. Respiration. 2008;76:193–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Casoni GL, Tomassetti S, Cavazza A, Colby TV, Dubini A, Ryu JH, et al. Transbronchial lung cryobiopsy in the diagnosis of fibrotic interstitial lung diseases. PLoS One. 2014;9:e86716.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Schumann C, Hetzel J, Babiak AJ, Merk T, Wibmer T, Möller P, et al. Cryoprobe biopsy increases the diagnostic yield in endobronchial tumor lesions. J Thorac Cardiovasc Surg. 2010;140:417–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Hetzel J, Eberhardt R, Herth FJ, Petermann C, Reichle G, Freitag L, et al. Cryobiopsy increases the diagnostic yield of endobronchial biopsy: a multicentre trial. Eur Respir J. 2012;39:685–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Sánchez-Cabral O, Martínez-Mendoza D, Fernandez-Bussy S, López-González B, Perea-Talamantes C, Rivera-Rosales RM, et al. Utility of transbronchial lung cryobiopsy in non-interstitial diseases. Respiration. 2017;94:285–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Pathak V, Shepherd RW, Hussein E, Malhotra R. Safety and feasibility of pleural cryobiopsy compared to forceps biopsy during semi-rigid pleuroscopy. Lung. 2017;195:371–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Tousheed SZ, Manjunath PH, Chandrasekar S, Murali Mohan BV, Kumar H, Hibare KR, et al. Cryobiopsy of the pleura: an improved diagnostic tool. J Bronchology Interv Pulmonol. 2018;25:37–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Tomassetti S, Wells AU, Costabel U, Cavazza A, Colby TV, Rossi G, et al. Bronchoscopic lung cryobiopsy increases diagnostic confidence in the multidisciplinary diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2016;193:745–52.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hetzel J, Maldonado F, Ravaglia C, Wells AU, Colby TV, Tomassetti S, et al. Transbronchial cryobiopsies for the diagnosis of diffuse parenchymal lung diseases: expert statement from the cryobiopsy working group on safety and utility and a call for standardization of the procedure. Respiration. 2018;95:188–200.CrossRefGoogle Scholar
  25. 25.
    Raparia K, Aisner DL, Allen TC, Beasley MB, Borczuk A, Cagle PT, et al. Transbronchial lung cryobiopsy for interstitial lung disease diagnosis: a perspective from members of the Pulmonary Pathology Society. Arch Pathol Lab Med. 2016;140(11):1281–4.CrossRefGoogle Scholar
  26. 26.
    Menestrina F, Lestani M, Mombello A, Cipriani A, Pomponi F, Adami F, et al. Transbronchial biopsy in sarcoidosis: the role of immunohistochemical analysis for granuloma detection. Sarcoidosis. 1992;9:95–100.PubMedGoogle Scholar
  27. 27.
    Poletti V, Chilosi M, Olivieri D. Diagnostic invasive procedures in diffuse infiltrative lung diseases. Respiration. 2004;71:107–19.PubMedCrossRefGoogle Scholar
  28. 28.
    Chilosi M, Pea M, Martignoni G, Brunelli M, Gobbo S, Poletti V, et al. Cathepsin-k expression in pulmonary lymphangioleiomyomatosis. Mod Pathol. 2009;22:161–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Poletti V, Tomassetti S, Ravaglia C, Dubini A, Piciucchi S, Cavazza A, et al. Histopathology and cryobiopsy. In: ERS Monograph. Idiopathic pulmonary fibrosis. ERS Monograph. 2016; p. 57–73.Google Scholar
  30. 30.
    Colby TV, Tomassetti S, Cavazza A, Dubini A, Poletti V. Transbronchial cryobiopsy in diffuse lung disease: update for the pathologist. Arch Pathol Lab Med. 2017;141:891–900.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Dejmek A, Naucler P, Smedjeback A, Kato H, Maeda M, Yashima K, et al. Napsin A (TA02) is a useful alternative to thyroid transcription factor-1 (TTF-1) for the identification of pulmonary adenocarcinoma cells in pleural effusions. Diagn Cytopathol. 2007;35:493–7.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ordóñez NG. Value of PAX8, PAX2, napsin A, carbonic anhydrase IX, and claudin-4 immunostaining in distinguishing pleural epithelioid mesothelioma from metastatic renal cell carcinoma. Mod Pathol. 2013;26:1132–43.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31:11–24.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hirano T, Gong Y, Yoshida K, Kato Y, Yashima K, Maeda M, et al. Usefulness of TA02 (napsin A) to distinguish primary lung adenocarcinoma from metastatic lung adenocarcinoma. Lung Cancer. 2003;41:155–62.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kolla V, Gonzales LW, Gonzales J, Wang P, Angampalli S, Feinstein SI, et al. Thyroid transcription factor in differentiating type II cells: regulation, isoforms, and target genes. Am J Respir Cell Mol Biol. 2007;36:213–25.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zhu LC, Yim J, Chiriboga L, Cassai ND, Sidhu GS, Moreira AL. DC-LAMP stains pulmonary adenocarcinoma with bronchiolar Clara cell differentiation. Hum Pathol. 2007;38:260–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Tsutahara S, Shijubo N, Hirasawa M, Honda Y, Satoh M, Kuroki Y, et al. Lung adenocarcinoma with type II pneumocyte characteristics. Eur Respir J. 1993;6:135–7.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Mizutani Y, Nakajima T, Morinaga S, Gotoh M, Shimosato Y, Akino T, et al. Immunohistochemical localization of pulmonary surfactant apoproteins in various lung tumors. Special reference to nonmucus producing lung adenocarcinomas. Cancer. 1988;61:532–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pelosi G, Fraggetta F, Pasini F, Maisonneuve P, Sonzogni A, Iannucci A, et al. Immunoreactivity for thyroid transcription factor-1 in stage I non-small cell carcinomas of the lung. Am J Surg Pathol. 2001;25:363–72.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Fabbro D, di Loreto C, Stamerra O, Beltrami CA, Lonigro R, Damante G. TTF-1 gene expression in human lung tumours. Eur J Cancer. 1996;32A:512–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Inamura K, Satoh Y, Okumura S, Nakagawa K, Tsuchiya E, Fukayama M, et al. Pulmonary adenocarcinomas with enteric differentiation: histologic and immunohistochemical characteristics compared with metastatic colorectal cancers and usual pulmonary adenocarcinomas. Am J Surg Pathol. 2005;29:660–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Mazziotta RM, Borczuk AC, Powell CA, Mansukhani M. CDX2 immunostaining as a gastrointestinal marker: expression in lung carcinomas is a potential pitfall. Appl Immunohistochem Mol Morphol. 2005;13:55–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Shah RN, Badve S, Papreddy K, Schindler S, Laskin WB, Yeldandi AV. Expression of cytokeratin 20 in mucinous bronchioloalveolar carcinoma. Hum Pathol. 2002;33:915–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Nottegar A, Tabbò F, Luchini C, Brunelli M, Bria E, Veronese N, et al. Pulmonary adenocarcinoma with enteric differentiation: immunohistochemistry and molecular morphology. Appl Immunohistochem Mol Morphol. 2018;26:383–7.PubMedGoogle Scholar
  45. 45.
    Tabbò F, Nottegar A, Guerrera F, Migliore E, Luchini C, Maletta F, et al. Cell of origin markers identify different prognostic subgroups of lung adenocarcinoma. Hum Pathol. 2018;75:167–78.PubMedCrossRefGoogle Scholar
  46. 46.
    Chilosi M, Murer B. Mixed adenocarcinomas of the lung: place in new proposals in classification, mandatory for target therapy. Arch Pathol Lab Med. 2010;134:55–65.PubMedGoogle Scholar
  47. 47.
    Puglisi F, Barbone F, Damante G, Bruckbauer M, Di Lauro V, Beltrami CA, et al. Prognostic value of thyroid transcription factor-1 in primary, resected, non-small cell lung carcinoma. Mod Pathol. 1999;12:318–24.PubMedGoogle Scholar
  48. 48.
    Tsuta K, Ishii G, Nitadori J, Murata Y, Kodama T, Nagai K, et al. Comparison of the immunophenotypes of signet-ring cell carcinoma, solid adenocarcinoma with mucin production, and mucinous bronchioloalveolar carcinoma of the lung characterized by the presence of cytoplasmic mucin. J Pathol. 2006;209:78–87.PubMedCrossRefGoogle Scholar
  49. 49.
    Caliò A, Lever V, Rossi A, Gilioli E, Brunelli M, Dubini A, et al. Increased frequency of bronchiolar histotypes in lung carcinomas associated with idiopathic pulmonary fibrosis. Histopathology. 2017;71:725–35.PubMedCrossRefGoogle Scholar
  50. 50.
    Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398:708–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398:714–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Yang A, McKeon F. P63 and P73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol. 2000;1:199–207.PubMedCrossRefGoogle Scholar
  53. 53.
    Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE, et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci U S A. 2000;97:5462–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wang BY, Gil J, Kaufman D, Gan L, Kohtz DS, Burstein DE. P63 in pulmonary epithelium, pulmonary squamous neoplasms, and other pulmonary tumors. Hum Pathol. 2002;33:921–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Tatsumori T, Tsuta K, Masai K, Kinno T, Taniyama T, Yoshida A, et al. p40 is the best marker for diagnosing pulmonary squamous cell carcinoma: comparison with p63, cytokeratin 5/6, desmocollin-3, and sox2. Appl Immunohistochem Mol Morphol. 2014;22:377–82.PubMedCrossRefGoogle Scholar
  56. 56.
    Chilosi M, Zamò A, Brighenti A, Malpeli G, Montagna L, Piccoli P, et al. Constitutive expression of DeltaN-p63alpha isoform in human thymus and thymic epithelial tumours. Virchows Arch. 2003;443:175–83.PubMedCrossRefGoogle Scholar
  57. 57.
    Zamò A, Malpeli G, Scarpa A, Doglioni C, Chilosi M, Menestrina F. Expression of TP73L is a helpful diagnostic marker of primary mediastinal large B-cell lymphomas. Mod Pathol. 2005;18:1448–53.PubMedCrossRefGoogle Scholar
  58. 58.
    Pelosi G, Sonzogni A, Harari S, Albini A, Bresaola E, Marchiò C, et al. Classification of pulmonary neuroendocrine tumors: new insights. Transl Lung Cancer Res. 2017;6:513–29.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mengoli MC, Rossi G, Cavazza A, Franco R, Marino FZ, Migaldi M, et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) syndrome and carcinoid tumors with/without NECH: a clinicopathologic, radiologic, and immunomolecular comparison study. Am J Surg Pathol. 2018;42:646–55.Google Scholar
  60. 60.
    Rossi G, Jocollé G, Conti A, Tiseo M, Zito Marino F, Donati G, et al. Detection of ROS1 rearrangement in non-small cell lung cancer: current and future perspectives. Lung Cancer (Auckl). 2017;8:45–55.Google Scholar
  61. 61.
    Rossi G, Ragazzi M, Tamagnini I, Mengoli MC, Vincenzi G, Barbieri F, et al. Does immunohistochemistry represent a robust alternative technique in determining drugable predictive gene alterations in non-small cell lung cancer? Curr Drug Targets. 2017;18:13–26.PubMedCrossRefGoogle Scholar
  62. 62.
    Boyle TA, Masago K, Ellison KE, Yatabe Y, Hirsch FR. ROS1 immunohistochemistry among major genotypes of non-small-cell lung cancer. Clin Lung Cancer. 2015;16:106–11.PubMedCrossRefGoogle Scholar
  63. 63.
    Selinger CI, Li BT, Pavlakis N, Links M, Gill AJ, Lee A, et al. Screening for ROS1 gene rearrangements in non-small-cell lung cancers using immunohistochemistry with FISH confirmation is an effective method to identify this rare target. Histopathology. 2017;70:402–11.PubMedCrossRefGoogle Scholar
  64. 64.
    Kim EK, Kim KA, Lee CY, Shim HS. The frequency and clinical impact of HER2 alterations in lung adenocarcinoma. PLoS One. 2017;12:e0171280.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ko YS, Kim NY, Pyo JS. Concordance analysis between HER2 immunohistochemistry and in situ hybridization in non-small cell lung cancer. Int J Biol Markers. 2018;33:49–54.PubMedCrossRefGoogle Scholar
  66. 66.
    Wu YC, Chang IC, Wang CL, Chen TD, Chen YT, Liu HP, et al. Comparison of IHC, FISH and RT-PCR methods for detection of ALK rearrangements in 312 non-small cell lung cancer patients in Taiwan. PLoS One. 2013;8:e70839.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Peretti U, Ferrara R, Pilotto S, Kinspergher S, Caccese M, Santo A, et al. ALK gene copy number gains in non-small-cell lung cancer: prognostic impact and clinico-pathological correlations. Respir Res. 2016;17:105.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Caliò A, Bria E, Pilotto S, Gilioli E, Nottegar A, Eccher A, et al. ALK gene copy number in lung cancer: Unspecific polyploidy versus specific amplification visible as double minutes. Cancer Biomark. 2017;18:215–20.PubMedCrossRefGoogle Scholar
  69. 69.
    Lan B, Ma C, Zhang C, Chai S, Wang P, Ding L, Wang K. Association between PD-L1 expression and driver gene status in non-small-cell lung cancer: a meta-analysis. Oncotarget. 2018;9:7684–99.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Yaziji H, Battifora H, Barry TS, Hwang HC, Bacchi CE, McIntosh MW, et al. Evaluation of 12 antibodies for distinguishing epithelioid mesothelioma from adenocarcinoma: identification of a three-antibody immunohistochemical panel with maximal sensitivity and specificity. Mod Pathol. 2006;19:514–23.PubMedCrossRefGoogle Scholar
  71. 71.
    Kushitani K, Amatya VJ, Okada Y, Katayama Y, Mawas AS, Miyata Y, et al. Utility and pitfalls of immunohistochemistry in the differential diagnosis between epithelioid mesothelioma and poorly differentiated lung squamous cell carcinoma. Histopathology. 2017;70:375–84.PubMedCrossRefGoogle Scholar
  72. 72.
    Marchevsky AM, LeStang N, Hiroshima K, Pelosi G, Attanoos R, Churg A, et al. The differential diagnosis between pleural sarcomatoid mesothelioma and spindle cell/pleomorphic (sarcomatoid) carcinomas of the lung: evidence-based guidelines from the International Mesothelioma Panel and the MESOPATH National Reference Center. Hum Pathol. 2017;67:160–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Husain AN, Colby TV, Ordóñez NG, Allen TC, Attanoos RL, Beasley MB, et al. Guidelines for pathologic diagnosis of malignant mesothelioma 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2018;142:89–108.PubMedCrossRefGoogle Scholar
  74. 74.
    Amin KM, Litzky LA, Smythe WR, Mooney AM, Morris JM, Mews DJ, et al. Wilms’ tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. Am J Pathol. 1995;146:344–56.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Doglioni C, Dei Tos AP, Laurino L, Iuzzolino P, Chiarelli C, Celio MR, Viale G. Calretinin: a novel immunocytochemical marker for mesothelioma. Am J Surg Pathol. 1996;20:1037–46.PubMedCrossRefGoogle Scholar
  76. 76.
    He C, Wang B, Wan C, Yang T, Shen Y. Diagnostic value of D2-40 immunostaining for malignant mesothelioma: a meta-analysis. Oncotarget. 2017;8:64407–16.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Sheibani K, Shin SS, Kezirian J, Weiss LM. Ber-EP4 antibody as a discriminant in the differential diagnosis of malignant mesothelioma versus adenocarcinoma. Am J Surg Pathol. 1991;15:779–84.PubMedCrossRefGoogle Scholar
  78. 78.
    Comin CE, Novelli L, Boddi V, Paglierani M, Dini S. Calretinin, thrombomodulin, CEA, and CD15: a useful combination of immunohistochemical markers for differentiating pleural epithelial mesothelioma from peripheral pulmonary adenocarcinoma. Hum Pathol. 2001;32:529–36.PubMedCrossRefGoogle Scholar
  79. 79.
    Ordóñez NG. Application of immunohistochemistry in the diagnosis of epithelioid mesothelioma: a review and update. Hum Pathol. 2013;44:1–19.PubMedCrossRefGoogle Scholar
  80. 80.
    Wu D, Hiroshima K, Matsumoto S, Nabeshima K, Yusa T, Ozaki D, et al. Diagnostic usefulness of p16/CDKN2A FISH in distinguishing between sarcomatoid mesothelioma and fibrous pleuritis. Am J Clin Pathol. 2013;139:39–46.PubMedCrossRefGoogle Scholar
  81. 81.
    Cigognetti M, Lonardi S, Fisogni S, Balzarini P, Pellegrini V, Tironi A, et al. BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol. 2015;28:1043–57.PubMedCrossRefGoogle Scholar
  82. 82.
    Churg A, Sheffield BS, Galateau-Salle F. New markers for separating benign from malignant mesothelial proliferations: are we there yet? Arch Pathol Lab Med. 2016;140:318–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Chilosi M, Zinzani PL, Poletti V. Lymphoproliferative lung disorders. Semin Respir Crit Care Med. 2005;26:490–501.PubMedCrossRefGoogle Scholar
  84. 84.
    Munari E, Rinaldi M, Ambrosetti A, Bonifacio M, Bonalumi A, Chilosi M, et al. Absence of TCL1A expression is a useful diagnostic feature in splenic marginal zone lymphoma. Virchows Arch. 2012;461:677–85.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Poletti V, Gurioli C, Piciucchi S, Rossi A, Ravaglia C, Dubini A, et al. Intravascular large B cell lymphoma presenting in the lung: the diagnostic value of transbronchial cryobiopsy. Sarcoidosis Vasc Diffuse Lung Dis. 2015;31:354–8.PubMedGoogle Scholar
  86. 86.
    Schiavo D, Batzlaff C, Maldonado F. Pulmonary parenchymal lymphoma diagnosed by bronchoscopic cryoprobe lung biopsy. J Bronchology Interv Pulmonol. 2016;23:174–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Yap E, Low I. Bronchoscopic transbronchial cryobiopsy diagnosis of recurrent diffuse large B-cell lymphoma in the lung: a promising new tool? J Bronchology Interv Pulmonol. 2017;24:e22–3.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chilosi M, Lestani M, Baruzzi G, Poletti V. Histopathological and immunohistological findings in AIDS-associated lung disorders. Eur Respir Mon. 1995;2:150–203.Google Scholar
  89. 89.
    Troxell ML, Lanciault C. Practical applications in immunohistochemistry: evaluation of rejection and infection in organ transplantation. Arch Pathol Lab Med. 2016;140:910–25.PubMedCrossRefGoogle Scholar
  90. 90.
    Hofmann-Thiel S, Turaev L, Hoffmann H. Evaluation of the hyplex TBC PCR test for detection of Mycobacterium tuberculosis complex in clinical samples. BMC Microbiol. 2010;10:95.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chilosi M, Doglioni C. Constitutive p63 expression in airway basal cells. A molecular target in diffuse lung diseases. Sarcoidosis Vasc Diffuse Lung Dis. 2001;18:23–6.PubMedGoogle Scholar
  92. 92.
    Chilosi M, Poletti V, Murer B, Lestani M, Cancellieri A, Montagna L, et al. Abnormal re-epithelialization and lung remodeling in idiopathic pulmonary fibrosis: the role of deltaN-p63. Lab Investig. 2002;82:1335–45.PubMedCrossRefGoogle Scholar
  93. 93.
    Sheikh HA, Fuhrer K, Cieply K, Yousem S. p63 expression in assessment of bronchioloalveolar proliferations of the lung. Mod Pathol. 2004;17:1134–40.PubMedCrossRefGoogle Scholar
  94. 94.
    Romano RA, Ortt K, Birkaya B, Smalley K, Sinha S. An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One. 2009;4:e5623.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ficial M, Antonaglia C, Chilosi M, Santagiuliana M, Tahseen AO, Confalonieri D, et al. Keratin-14 expression in pneumocytes as a marker of lung regeneration/repair during diffuse alveolar damage. Am J Respir Crit Care Med. 2014;189:1142–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Confalonieri M, Buratti E, Grassi G, Bussani R, Chilosi M, Farra R, et al. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease. PLoS One. 2017;12:e0172130.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wallace WA, Howie SE, Lamb D, Salter DM. Tenascin immunoreactivity in cryptogenic fibrosing alveolitis. J Pathol. 1995;175:415–20.PubMedCrossRefGoogle Scholar
  98. 98.
    Kuhn C, Mason RJ. Immunolocalization of SPARC, tenascin, and thrombospondin in pulmonary fibrosis. Am J Pathol. 1995;147:1759–69.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Greenberger PA. 7. Immunologic lung disease. J Allergy Clin Immunol. 2008;121(2 Suppl):S393–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Lu Y, Malmhäll C, Sjöstrand M, Rådinger M, O’Neil SE, Lötvall J, et al. Expansion of CD4(+) CD25(+) and CD25(−) T-Bet, GATA-3, Foxp3 and RORγt cells in allergic inflammation, local lung distribution and chemokine gene expression. PLoS One. 2011;6:e19889.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Chilosi M, Mombello A, Montagna L, Benedetti A, Lestani M, Semenzato G, et al. Multimarker immunohistochemical staining of calgranulins, chloroacetate esterase, and S100 for simultaneous demonstration of inflammatory cells on paraffin sections. J Histochem Cytochem. 1990;38:1669–75.PubMedCrossRefGoogle Scholar
  102. 102.
    Reghellin D, Poletti V, Tomassett S, Dubini A, Cavazza A, Rossi G, et al. Cathepsin-K is a sensitive immunohistochemical marker for detection of micro-granulomas in hypersensitivity pneumonitis. Sarcoidosis Vasc Diffuse Lung Dis. 2010;27:57–63.PubMedGoogle Scholar
  103. 103.
    Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B, Calicchio ML, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116:1919–23.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Haroche J, Charlotte F, Arnaud L, von Deimling A, Hélias-Rodzewicz Z, Hervier B, et al. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood. 2012;120:2700–3.PubMedCrossRefGoogle Scholar
  105. 105.
    Roden AC, Hu X, Kip S, Parrilla Castellar ER, Rumilla KM, et al. BRAF V600E expression in Langerhans cell histiocytosis: clinical and immunohistochemical study on 25 pulmonary and 54 extrapulmonary cases. Am J Surg Pathol. 2014;38:548–51.PubMedCrossRefGoogle Scholar
  106. 106.
    Chilosi M, Facchetti F, Caliò A, Zamò A, Brunelli M, Martignoni G, et al. Oncogene-induced senescence distinguishes indolent from aggressive forms of pulmonary and non-pulmonary Langerhans cell histiocytosis. Leuk Lymphoma. 2014;55:2620–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Cangi MG, Biavasco R, Cavalli G, Grassini G, Dal-Cin E, Campochiaro C, et al. BRAFV600E-mutation is invariably present and associated to oncogene-induced senescence in Erdheim-Chester disease. Ann Rheum Dis. 2015;74:1596–602.PubMedCrossRefGoogle Scholar
  108. 108.
    Martignoni G, Pea M, Reghellin D, Gobbo S, Zamboni G, Chilosi M, et al. Molecular pathology of lymphangioleiomyomatosis and other perivascular epithelioid cell tumors. Arch Pathol Lab Med. 2010;134:33–40.PubMedGoogle Scholar
  109. 109.
    Bonetti F, Chiodera PL, Pea M, Martignoni G, Bosi F, Zamboni G, et al. Transbronchial biopsy in lymphangiomyomatosis of the lung. HMB45 for diagnosis. Am J Surg Pathol. 1993;17:1092–102.PubMedCrossRefGoogle Scholar
  110. 110.
    Chilosi M, Doglioni C, Murer B, Poletti V. Epithelial stem cell exhaustion in the pathogenesis of idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2010;27:7–18.PubMedGoogle Scholar
  111. 111.
    Chilosi M, Carloni A, Rossi A, Poletti V. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res. 2013;162:156–73.PubMedCrossRefGoogle Scholar
  112. 112.
    Selman M, Pardo A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. An integral model. Am J Respir Crit Care Med. 2014;189:1161–72.PubMedCrossRefGoogle Scholar
  113. 113.
    Thannickal VJ, Murthy M, Balch WE, Chandel NS, Meiners S, Eickelberg O, et al. Blue journal conference. Aging and susceptibility to lung disease. Am J Respir Crit Care Med. 2015;191:261–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Carloni A, Poletti V, Fermo L, Bellomo N, Chilosi M. Heterogeneous distribution of mechanical stress in human lung: a mathematical approach to evaluate abnormal remodeling in IPF. J Theor Biol. 2013;332:136–40.PubMedCrossRefGoogle Scholar
  115. 115.
    Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2011;300:L391–401.PubMedCrossRefGoogle Scholar
  116. 116.
    Yanai H, Shteinberg A, Porat Z, Budovsky A, Braiman A, Zeische R, et al. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients. Aging (Albany NY). 2015;7:664–72.CrossRefGoogle Scholar
  117. 117.
    Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yamaguchi M, Hirai S, Tanaka Y, Sumi T, Miyajima M, Mishina T, et al. Fibroblastic foci, covered with alveolar epithelia exhibiting epithelial-mesenchymal transition, destroy alveolar septa by disrupting blood flow in idiopathic pulmonary fibrosis. Lab Investig. 2017;97:232–42.PubMedCrossRefGoogle Scholar
  119. 119.
    Kaarteenaho-Wiik R, Tani T, Sormunen R, Soini Y, Virtanen I, Pääkkö P. Tenascin immunoreactivity as a prognostic marker in usual interstitial pneumonia. Am J Respir Crit Care Med. 1996;154:511–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Chilosi M, Caliò A, Rossi A, Gilioli E, Pedica F, Montagna L, et al. Epithelial to mesenchymal transition-related proteins ZEB1, β-catenin, and β-tubulin-III in idiopathic pulmonary fibrosis. Mod Pathol. 2017;30:26–38.PubMedCrossRefGoogle Scholar
  121. 121.
    Chilosi M, Poletti V, Zamò A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol. 2003;162:1495–502.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Chilosi M, Zamò A, Doglioni C, Reghellin D, Lestani M, Montagna L, et al. Migratory marker expression in fibroblast foci of idiopathic pulmonary fibrosis. Respir Res. 2006;7:95.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Chilosi M, Murer B, Poletti V. Usual interstitial pneumonia. In: Zander S, Popper HH, Jagirdar J, Haque AK, Cagle PT, Barrios R, editors. Molecular pathology of lung diseases. Berlin: Springer; 2008. p. 607–15.CrossRefGoogle Scholar
  124. 124.
    Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005;166:1321–32.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Seibold MA, Wise AL, Speer MC, Steele MP, Brown KK, Loyd JE, et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med. 2011;364:1503–12.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Seibold MA, Smith RW, Urbanek C, Groshong SD, Cosgrove GP, Brown KK, et al. The idiopathic pulmonary fibrosis honeycomb cyst contains a mucociliary pseudostratified epithelium. PLoS One. 2013;8:e58658.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Plantier L, Crestani B, Wert SE, Dehoux M, Zweytick B, Guenther A, et al. Ectopic respiratory epithelial cell differentiation in bronchiolised distal airspaces in idiopathic pulmonary fibrosis. Thorax. 2011;66:651–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Alder JK, Chen JJ, Lancaster L, Danoff S, Su SC, Cogan JD, et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A. 2008;105:13051–6.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Mathai SK, Yang IV, Schwarz MI, Schwartz DA. Incorporating genetics into the identification and treatment of idiopathic pulmonary fibrosis. BMC Med. 2015;13:191.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Kaur A, Mathai SK, Schwartz DA. Genetics in idiopathic pulmonary fibrosis pathogenesis, prognosis, and treatment. Front Med (Lausanne). 2017;4:154.CrossRefGoogle Scholar
  131. 131.
    Schwartz DA. Idiopathic pulmonary fibrosis is a complex genetic disorder. Trans Am Clin Climatol Assoc. 2016;127:34–45.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Travis WD, Costabel U, Hansell DM, King TE Jr, Lynch DA, Nicholson AG, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188:733–48.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Rosenbaum JN, Butt YM, Johnson KA, Meyer K, Batra K, Kanne JP, et al. Pleuroparenchymal fibroelastosis: a pattern of chronic lung injury. Hum Pathol. 2015;46:137–46.PubMedCrossRefGoogle Scholar
  134. 134.
    Oda T, Ogura T, Kitamura H, Hagiwara E, Baba T, Enomoto Y, et al. Distinct characteristics of pleuroparenchymal fibroelastosis with usual interstitial pneumonia compared with idiopathic pulmonary fibrosis. Chest. 2014;146:1248–55.CrossRefGoogle Scholar
  135. 135.
    Enomoto Y, Matsushima S, Meguro S, Kawasaki H, Kosugi I, Fujisawa T, et al. Podoplanin-positive myofibroblasts: a pathologic hallmark of pleuroparenchymal fibroelastosis. Histopathology. 2018;72:1209–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marco Chilosi
    • 1
    • 2
    Email author
  • Lisa Marcolini
    • 1
  • Anna Caliò
    • 3
  • Venerino Poletti
    • 4
    • 5
  1. 1.Department of PathologyP. Pederzoli HospitalPeschiera del GardaItaly
  2. 2.Verona UniversityVeronaItaly
  3. 3.Department of Diagnostics and Public Health, Anatomic PathologyUniversity and Hospital TrustVeronaItaly
  4. 4.Department of Diseases of the ThoraxOspedale Morgagni-PierantoniForlìItaly
  5. 5.Department of Respiratory Diseases and AllergyAarhus University HospitalAarhusDenmark

Personalised recommendations