Advertisement

Building Resiliency to Climate Change Through Wetland Management and Restoration

  • Kimberli J. PonzioEmail author
  • Todd Z. Osborne
  • Gillian T. Davies
  • Ben LePage
  • Pallaoor V. Sundareshwar
  • S. J. Miller
  • A. M. K. Bochnak
  • S. A. Phelps
  • M. Q. Guyette
  • K. M. Chowanski
  • L. A. Kunza
  • P. J. Pellechia
  • R. A. Gleason
  • C. Sandvik
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 238)

Abstract

Never before has the resiliency of wetland ecosystems to climatic and anthropogenic stressors been more important or more recognized by those who study these unique ecosystems. The goal of this chapter is to discuss a variety of management and restoration approaches to building resiliency in wetlands that are subjected to changing conditions. We examine wetland responses to changing climatic and hydrologic conditions at multiple spatial (global to microscopic level) and temporal (100-million-year to 1-year) scales which informs our perspective on predicting future wetland responses to both anthropogenic and natural perturbations. Additionally, we introduce the utility of having advanced tools for monitoring changes at the biogeochemical scale, which is likely to be one of the first indicators of change to be detected. The case studies that we present enable us to learn techniques and approaches to address current and future stressors (natural and anthropogenic) on both coastal and inland wetland ecosystems and contain the common thread of carbon sequestration and biogeochemical cycling. We focus on the functional roles of wetlands in providing ecosystem services and how those ecosystem services are best protected, managed, and restored in light of a variety of stressors, such as global climate change, increased water use and demand, and land use changes. Wise-use approaches that enhance wetland biodiversity and resiliency to these changes and impacts are discussed, as are wetland-specific ecosystem services that provide enhanced water quality, water supply, flood protection, storm damage protection, pollution attenuation, and climate change resiliency for adjacent human communities.

Keywords

Wetlands Resiliency Carbon Climate change Polar wetlands Paleoecology Hydrology Subsidence Sea level rise Peat collapse Landward migration Biogeochemical function Phosphorus Ecosystem services Wetland restoration 

References

  1. Adamus PR (2007) Best available science for wetlands of Island County, Washington: review of published literature a report prepared in response to critical areas ordinance updating requirements for wetlands Island County Department of Planning and Community Development. http://people.oregonstate.edu/~adamusp/Puget Sound BAS & Critical Areas/IslandCountyWA/Adamus2006_IslandCoBAS.pdf. Accessed 21 Jan 2018
  2. Adler A, Karacic A, Weih M (2008) Biomass allocation and nutrient use in fast-growing woody and herbaceous perennials used for phytoremediation. Plant Soil 305:189–206CrossRefGoogle Scholar
  3. Agerer R (1987) Colour atlas of ectomycorrhizae. Einhorn, Schwäbisch GmündGoogle Scholar
  4. AMAP (2017) Snow, water, ice and permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme (AMAP), Oslo, NorwayGoogle Scholar
  5. Amelung W, Rodionov A, Urusevskaja IS, Haumaier L, Zech W (2001) Forms of organic phosphorus in zonal steppe soils of Russia assessed by 31P NMR. Geoderma 103:335–350CrossRefGoogle Scholar
  6. Anderson DW, Saggar S, Bettany JR, Stewart JWB (1981) Particle size fractions and their use in studies of soil organic matter: I. The nature and distribution of forms of carbon, nitrogen and sulfur. Soil Sci Soc Am J 45:767–772CrossRefGoogle Scholar
  7. Anderson MG, Barnett A, Clark M, Sheldon AO, Prince J, Vickery B (2016a) Resilient and connected landscapes for terrestrial conservation. The Nature Conservancy, Eastern Conservation Science, Boston, MA. http://nwblcc.org/wp-content/uploads/2016/08/Anderson-et-al.-2016-Resilient_and_Connected_Landscapes_For_Terrestial_Conservation.pdf. Accessed 21 Jan 2018Google Scholar
  8. Anderson MG, Barnett A, Clark M, Ferree C, Sheldon AO, Prince J (2016b) Resilient sites for terrestrial conservation in Eastern North America 2016 Edition. The Nature Conservancy, Eastern Conservation Science, Boston, MA. http://climatechange.lta.org/wp-content/uploads/cct/2016/07/Resilient_Sites_for_Terrestrial_Conservation.pdf. Accessed 21 Jan 2018Google Scholar
  9. Anisimov OA, Vaughan DG, Callaghan TV, Furgal C, Marchant H, Prowse TD, Vilhjálmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic). In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, pp 653–685Google Scholar
  10. Arbuzov SI, Volostnov AV, Rikhvanov LP, Mezhibor AM, Ilenok SS (2011) Geochemistry of radioactive elements (U, Th) in coal and peat of northern Asia (Siberia, Russian Far East, Kazakhstan, and Mongolia). Int J Coal Geol 86:318–328CrossRefGoogle Scholar
  11. Arctic Climate Impact Assessment (2005) Arctic climate impact assessment. ACIA overview report. Cambridge University Press, CambridgeGoogle Scholar
  12. Balmford A, Bruner A, Cooper P, Costanza R, Farber S, Green RE, Jenkins M, Jefferiss P, Jessamy V, Madden J, Munro K, Myers N, Naeem S, Paavola J, Rayment M, Rosendo S, Roughgarden J, Trumper K, Turner RK (2002) Economic reasons for conserving wild nature. Science 297:950–953PubMedCrossRefGoogle Scholar
  13. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193CrossRefGoogle Scholar
  14. Beauregard F, de Blois S (2014) Beyond a climate centric view of plant distribution: edaphic variables add value to distribution models. PLoS One 9(3):e92642.  https://doi.org/10.1371/journal.pone.0092642 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Benitez-Nelson CR, O’Neill L, Kolowith LC, Pellechia PJ, Thunell R (2004) Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol Oceanogr 49:1593–1604CrossRefGoogle Scholar
  16. Bochnak AMK, Osborne TZ, Ponzio KJ (2015) Balancing water supply and flood control management with the protection of peat-based subtropical wetlands in Florida. Paper presented at the annual conference of the Society of Wetland Scientists, Providence, RI, USA, 3 June 2015Google Scholar
  17. Boisvert-Marsh L, Périé C, de Blois S (2014) Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5:83.  https://doi.org/10.1890/ES14-00111.1 CrossRefGoogle Scholar
  18. Boucek RE, Rehage JS (2015) A tale of two fishes: using recreational angler records to examine the link between fish catches and floodplain connections in a subtropical river. Estuar Coast 38(S1):124–135CrossRefGoogle Scholar
  19. Bowman RA, Reeder JD, Lober RW (1990) Changes in soil properties in a central plains rangeland soil after 3, 20 and 60 years of cultivation. Soil Sci 150:851–857CrossRefGoogle Scholar
  20. Brenner M, Schelske CL, Keenan LW (2001) Historical rates of sediment and nutrient accumulation in marshes of the Upper St. Johns River, Florida, USA. J Paleolimnol 26:241–257CrossRefGoogle Scholar
  21. Bridges EM (1978) Interactions of soil and mankind in Britain. J Soil Sci 29:125–139CrossRefGoogle Scholar
  22. Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26(4):889–916.  https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2 CrossRefGoogle Scholar
  23. Bridgham SD, Moore TR, Richardson CJ, Roulet NT (2014) Errors in greenhouse forcing and soil carbon sequestration estimates in freshwater wetlands: a comment on Mitsch et al. 2013. Landscape Ecol 29(9):1481–1485.  https://doi.org/10.1007/s10980-014-0067-2 CrossRefGoogle Scholar
  24. Brinson MM (1993) A hydrogeomorphic classification for wetlands. Wetlands Research Program Technical Report WRP-DE-4, U.S. Army Corps of Engineers, Vicksburg, MSGoogle Scholar
  25. Brinson MM, Rheinhardt RD (1996) The role of reference wetlands in functional assessment and mitigation. Ecol Appl 6:69–76CrossRefGoogle Scholar
  26. Bruland GL, Hanchey MF, Richardson CJ (2003) Effects of agriculture and wetland restoration on hydrology, soils, and water quality of a Carolina bay complex. Wetl Ecol Manag 11:141–156CrossRefGoogle Scholar
  27. Brye KR, Andraski TW, Jarrell WM, Bundy LG, Norman JM (2002) Phosphorus leaching under a restored tallgrass prairie and corn agroecosystems. J Environ Qual 31:769–781PubMedCrossRefGoogle Scholar
  28. Budny ML, Benscoter BW (2016) Shrub encroachment increases transpiration water loss from a subtropical wetland. Wetlands 36:631–638CrossRefGoogle Scholar
  29. Cade-Menun BJ (2005) Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 66:359–371PubMedCrossRefGoogle Scholar
  30. Cade-Menun BJ, Berch SM, Preston CM, Lavkulich LM (2000) Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. I. A comparison of two forest types. Can J Forest Res 30:1714–1725CrossRefGoogle Scholar
  31. Cade-Menun BJ, Navaratnam JA, Walbridge MR (2006) Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environ Sci Technol 40:7874–7880PubMedCrossRefGoogle Scholar
  32. Cao M, Gregson K, Marshall SJ (1998) Global methane emission from wetlands and its sensitivity to climate change. Atmos Environ 32:3293–3299CrossRefGoogle Scholar
  33. Carman R, Edlund G, Damberg C (2000) Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments: a 31P NMR study. Chem Geol 163:101–114CrossRefGoogle Scholar
  34. Chambers LG, Reddy KR, Osborne TZ (2011) Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Sci Soc Am J 75:2000–2007CrossRefGoogle Scholar
  35. Chambers LG, Osborne TZ, Reddy KR (2013) Effect of salinity pulsing events on soil organic carbon loss across an intertidal wetland gradient: a laboratory experiment. Biogeochemistry 115:363–383CrossRefGoogle Scholar
  36. Chambers LG, Davis SE, Troxler T, Boyer JN, Downey-Wall A, Scinto LJ (2014) Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia 726:195–211CrossRefGoogle Scholar
  37. Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cy 17(4):1–11.  https://doi.org/10.1029/2002GB001917 CrossRefGoogle Scholar
  38. Christie J, Kusler J (2009) Recommendations for a national wetlands and climate change initiative. https://www.aswm.org/pdf_lib/recommendations_2008_112008.pdf. Accessed 21 Jan 2018
  39. Clark LL, Ingall ED, Benner R (1998) Marine phosphorus is selectively remineralized. Nature 393:426CrossRefGoogle Scholar
  40. Condron LM, Goh KM, Newman RH (1985) Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P-NMR analysis. J Soil Sci 36(2):199–207CrossRefGoogle Scholar
  41. Condron LM, Frossard E, Tiessen H, Newman RH, Stewart JWB (1990) Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions. J Soil Sci 41(1):41–50CrossRefGoogle Scholar
  42. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of world’s ecosystem services and natural capital. Nature 397:253–260CrossRefGoogle Scholar
  43. Cox DT, Vosatka ED, Moody HL, Conner LL (1982) D-J F-25 St. Johns River fisheries resources completion report. Florida Game and Fresh Water Fish Commission, Tallahassee, FLGoogle Scholar
  44. Craft CB, Richardson CJ (1993a) Peat accretion and N, P, and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecol Appl 3:446–458PubMedCrossRefGoogle Scholar
  45. Craft CB, Richardson CJ (1993b) Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades. Biogeochemistry 22:133–156CrossRefGoogle Scholar
  46. Craft CB, Richardson CJ (1998) Recent and long-term organic soil accretion and nutrient accumulation in the Everglades. Soil Sci Soc Am J 62:834–843CrossRefGoogle Scholar
  47. Craft CB, Clough J, Ehman J, Joye S, Park R, Pennings S, Gou H, Machmuller M (2008) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7:73–78CrossRefGoogle Scholar
  48. Daily GC (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DCGoogle Scholar
  49. DeLaune RD, White JR (2012) Will coastal wetlands continue to sequester carbon in response to an increase in global seal level?: a case study of the rapidly subsiding Mississippi River deltaic plain. Climatic Change 110:297–314CrossRefGoogle Scholar
  50. Downs RJ (1962) Photocontrol of growth and dormancy in woody plants. In: Kozlowski TZ (ed) Tree growth. Ronald, New York, pp 133–148Google Scholar
  51. Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439:68–71PubMedCrossRefGoogle Scholar
  52. Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17(1):71–84.  https://doi.org/10.1007/s11273-008-9119-1 CrossRefGoogle Scholar
  53. Euliss NH Jr, Mushet DM, Newton WE, Otto CRV, Nelson RD, LaBaugh JW, Scherff EJ, Rosenberry DO (2014) Placing prairie pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations. J Hydrol 513:490–503CrossRefGoogle Scholar
  54. Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D’Alpaos A, van de Koppel J, Rybczyk JM, Reyes E, Craft CB, Clough J (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climate factors. Rev Geophys 50:28CrossRefGoogle Scholar
  55. Fall C (1982) Water quality monitoring annual report, 1979-1981. Technical report no. 17, St. Johns River Water Management District, Palatka, FLGoogle Scholar
  56. Fauth JE, Quintana-Ascencio PF, Hinkle CR, Wang D, Woodberry O, Chee YE (2016) Transpiration by Carolina willow (Salix caroliniana): environmental effects and cost-efficient management. Final report. St. Johns River Water Management District, Palatka, FLGoogle Scholar
  57. Finlayson CM, D’Cruz R, Davidson N, Alder J, Steve C, de Groot R, Taylor D (2005) Millennium ecosystem assessment, 2005. Ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington, DC.  https://doi.org/10.1007/BF02987493, accessed 21 Jan 2018PubMedCrossRefGoogle Scholar
  58. Florida Department of Environmental Protection (2016) Final integrated water quality assessment for Florida: 2016 Sections 303(d), 305(b) and 314 report and listing. Florida Department of Environmental Protection. https://floridadep.gov/sites/default/files/2016-Integrated-Report.pdf. Accessed 12 Dec 2017
  59. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  60. Fox S, Bochnak A, Osborne T, Keenan L, Speaks S, Dobberfuhl D (2014) Modeling wetland subsidence and elevation change in a headwater system: interpolation, model validation and implications for downstream water quality. Paper presented at AWRA GIS and water resources VIII: data to decisions, Snowbird, UT, 12–14 May 2014. http://www.awra.org/meetings/SnowBird2014/doc/final-program.pdf
  61. Gaiser EE, Zafiris A, Ruiz PL, Tobias FAC, Ross MS (2006) Tracking rates of ecotone migration due to salt-water encroachment using fossil mollusks in coastal South Florida. Hydrobiologia 569:237–257CrossRefGoogle Scholar
  62. Geselbracht L, Freeman K, Kelly E, Gordon DR, Putz FE (2011) Retrospective and prospective model simulations of sea level rise impacts on Gulf of Mexico coastal marshes and forests in Waccasassa Bay, Florida. Clim Change 107:35–57CrossRefGoogle Scholar
  63. Gleason RA, Laubhan MK, Euliss NH Jr (eds) (2008) Ecosystem services derived from wetland conservation practices in the United States prairie pothole region with an emphasis on the U.S. Department of Agriculture Conservation Reserve and Wetlands Reserve Programs. Professional Paper 1745, U.S. Geological Survey, Reston, VAGoogle Scholar
  64. Gressel N, McColl JG, Preston CM, Newman RH, Powers RF (1996) Linkages between phosphorus transformations and carbon decomposition in a forest soil. Biogeochemistry 33:97–123CrossRefGoogle Scholar
  65. Guggenberger G, Christensen BT, Rubæk GH, Zech W (1996) Land use and fertilization effects on P forms in two European soils: resin extraction and [31]P-NMR analysis. Eur J Soil Sci 47:605–614CrossRefGoogle Scholar
  66. Hall GB (1987) Establishment of minimum surface water requirements for the greater Lake Washington Basin. Technical Publication SJ87–3. St. Johns River Water Management District, Palatka, FLGoogle Scholar
  67. Hall DL, Ponzio KJ, Miller JB, Bowen PJ, Curtis DL (2017) Ecology and management of Carolina willow (Salix caroliniana): a compendium of knowledge. Technical Publication SJ2017-01. St. Johns River Water Management District, Palatka, FLGoogle Scholar
  68. Harland WB, Pickton CAG, Wright NJR, Croxton CA, Smith DG, Cutbill JL, Henderson WG (1976) Some coal-bearing strata in Svalbard. Norsk Polarinstitutt Skrifter 164:1–89Google Scholar
  69. Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008) Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc Natl Acad Sci USA 105(46):17842–17847PubMedCrossRefGoogle Scholar
  70. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz S, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn AM, Terry AC, Troumbis AY, Woodward FY, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127CrossRefGoogle Scholar
  71. Heer O (1868–1883) Flora Fossilis Arctica, volumes 1–7. Druck and Verlag von Friedrich Schulthess and Verlag von J. Wurster and Comp, Winterthur and ZürichGoogle Scholar
  72. Herman AB (2013) Albian-Paleocene flora of the North Pacific: systematic composition, palaeofloristics and phytostratigraphy. Stratigr Geol Correl 21:689–747CrossRefGoogle Scholar
  73. Huber M, Caballero R (2011) The early Eocene equable climate problem revisited. Clim Past 7:603–633CrossRefGoogle Scholar
  74. Intergovernmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  75. Intergovernmental Panel on Climate Change (2014) Climate change 2014: synthesis report summary for policymakers, 7–16. https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf. Accessed 21 Jan 2018
  76. Johnston CA, Caretti ON (2017) Mangrove expansion into temperate marshes alters habitat quality for recruiting Callinectes spp. Mar Ecol Prog Ser 573:1–14CrossRefGoogle Scholar
  77. Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75(1):151–167.  https://doi.org/10.1007/s00027-012-0278-z CrossRefGoogle Scholar
  78. Karr JR, Chu EW (1999) Restoring life in running waters: better biological monitoring. Island Press, Washington, DCGoogle Scholar
  79. Keddy PA (2010) Wetland ecology: principles and conservation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  80. Keddy PA, Fraser LH (2003) The management of wetlands for biological diversity: four principles. In: Ambasht RS, Ambasht NK (eds) Modern trends in applied aquatic ecology. Springer, Boston, MA, pp 21–42CrossRefGoogle Scholar
  81. Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504(7478):53–60CrossRefGoogle Scholar
  82. Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:5CrossRefGoogle Scholar
  83. Kononova SV, Nesmeyanova MA (2002) Phosphonates and their degradation by microorganisms. Biochemistry (Moscow) 67:184–195CrossRefGoogle Scholar
  84. Kornis MS, Breitburg D, Balouskus R, Bilkovic DM, Davias LA, Giordano S, Heggie K, Hines AH, Jacobs JM, Jordan TE, King RS, Patrick CJ, Seitz RD, Soulen H, Targett TE, Weller DE, Whigham DF, Uphoff J (2017) Linking the abundance of estuarine fish and crustaceans in nearshore waters to shoreline hardening and land cover. Estuar Coast 40(5):1464–1486CrossRefGoogle Scholar
  85. Koukol O, Novak F, Hrabal R (2008) Composition of the organic phosphorus fraction in basidiocarps of saprotrophic and mycorrhizal fungi. Soil Biol Biochem 40:2464–2467CrossRefGoogle Scholar
  86. Kryshtofovich AN (1928) New data on the upper Tertiary flora of north-western Siberia. Proc Geol Comm 46:751–757Google Scholar
  87. Kusler J (2006) Common questions: wetland, climate change, and carbon sequestering. http://www.aswm.org/propub/wetlandsandclimate.pdf. Accessed 21 Jan 2018
  88. Larsen DP, Thornton KW, Urquhart NS, Paulsen SG (1994) The role of sample surveys for monitoring the condition of the Nation’s lakes. Environ Monit Assess 32:101–134PubMedCrossRefGoogle Scholar
  89. Lawler JJ (2009) Climate change adaptation strategies for resource management and conservation planning. Ann NY Acad Sci 1162:79–98.  https://doi.org/10.1111/j.1749-6632.2009.04147.x CrossRefPubMedGoogle Scholar
  90. LePage BA (2007) The taxonomy and biogeographic history of Glyptostrobus Endlicher (Cupressaceae). Spec Publ Peabody Mus Nat Hist Yale Univ 48:359–426CrossRefGoogle Scholar
  91. LePage BA (2009) Earliest occurrence of Taiwania (Cupressaceae) from the Early Cretaceous of Alaska: evolution, biogeography, and paleoecology. Proc Acad Nat Sci Phila 158:129–158CrossRefGoogle Scholar
  92. LePage BA, Yang H, Matsumoto M (2005) The evolution and biogeographic history of Metasequoia. In: LePage BA, Williams CJ, Yang H (eds) The geobiology and ecology of Metasequoia. Springer, Dordrecht, pp 3–114CrossRefGoogle Scholar
  93. Lovejoy TE, Hannah L (2006) Climate change and biodiversity. Yale University Press, New Haven and LondonGoogle Scholar
  94. Lopez RD, Fennessy MS (2002) Testing the floristic quality assessment index as an indicator of wetland condition. Ecol Appl 12:487–497CrossRefGoogle Scholar
  95. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tillman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefGoogle Scholar
  96. Lowe EF (1983) Distribution and structure of floodplain plant communities in the Upper Basin of the St. Johns River, Florida. Technical Publication 83-8, St. Johns River Water Management District, Palatka, FLGoogle Scholar
  97. Lowe EF, Brooks JE, Fall CJ, Gerry LR, Hall GB (1984) U.S. EPA Clean Lakes Program, Phase I. Diagnostic-feasibility study of the Upper St. Johns River chain of lakes. Vol. 1 – Diagnostic study. Tech. Pub. SJ 84-15. St. Johns River Water Management District, Palatka, FLGoogle Scholar
  98. Lusby FE, Gibbs MM, Cooper AB, Thompson K (1998) The fate of groundwater ammonium in a lake edge wetland. J Environ Qual 27:459–466CrossRefGoogle Scholar
  99. MacDonald GM, Kremenetski KV, Beilman DW (2008) Climate change and the northern Russian treeline zone. Philos Trans R Soc B Biol Sci 363:2285–2299CrossRefGoogle Scholar
  100. Mahieu N, Olk DC, Randall EW (2000) Analysis of phosphorus in two humic acid fractions of intensively cropped lowland rice soil by 31P-NMR. Eur J Soil Sci 51:391–402CrossRefGoogle Scholar
  101. Maltby E, Acreman MC (2011) Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrol Sci J 56(568):1341–1359.  https://doi.org/10.1080/02626667.2011.631014 CrossRefGoogle Scholar
  102. Mård, J, Box JE, Brown R, Mack M, Mernild SH, Walker D, Walsh J, Bhatt US, Epstein HE, Myers-Smith IH, Raynolds MK, Schuur EAG (2017) Cross-cutting scientific issues. In: Snow, water, ice and permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. pp 231–256Google Scholar
  103. Martin AC, Jeffers ES, Petrokofsky G, Myers-Smith I, Macias-Fauria M (2017) Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environ Res Lett 12.  https://doi.org/10.1088/1748-9326/aa7989 CrossRefGoogle Scholar
  104. McDowell RW, Condron LM, Stewart I, Cave V (2005) Chemical nature and diversity of phosphorus in New Zealand pasture soils using 31P nuclear magnetic resonance spectroscopy and sequential fractionation. Nutr Cycl Agroecos 72:241–254CrossRefGoogle Scholar
  105. McGuire KL, Allison SD, Fierer N, Tresede KK (2013) Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons. PLoS One 8(7):e68278.  https://doi.org/10.1371/journal.pone.0068278 PubMedPubMedCentralCrossRefGoogle Scholar
  106. McIver EE, Basinger JF (1999) Early Tertiary floral evolution in the Canadian High Arctic. Ann Mo Bot Gard 86:523–545CrossRefGoogle Scholar
  107. Millennium Ecosystem Assessment (2003) Ecosystems and human well being: a framework for assessment. Island Press, Washington, DCGoogle Scholar
  108. Miller SJ, Borah AK, Lee MA, Lowe EF, Rao DV (1996) Technical memorandum no. 13—Environmental water management plan for the Blue Cypress Water Management Area: Upper St. Johns River Basin Project. St. Johns River Water Management District, Palatka, FLGoogle Scholar
  109. Miller SJ, Lee MA, Lowe EF (1998) The Upper St. Johns River Basin Project: merging flood control with aquatic ecosystem restoration and preservation. In: Transactions of the 63rd North American wildlife and natural resources conference, vol 63, pp 156–170Google Scholar
  110. Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinhold, New YorkGoogle Scholar
  111. Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, New YorkGoogle Scholar
  112. Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, Hoboken, NJGoogle Scholar
  113. Mitsch WJ, Cronk JK, Wu X, Nairn RW, Hey DL (1995) Phosphorus retention in constructed freshwater riparian marshes. Ecol Appl 5:830–845CrossRefGoogle Scholar
  114. Moomaw WR, Chmura GL, Davies GT, Finlayson CM, Middleton BA, Natali SM, Perry JE, Roulet N, Sutton-Grier AE (2018) Wetlands in a changing climate: science, policy and management. Wetlands 38(2):183–205CrossRefGoogle Scholar
  115. Moseman-Valtierra S, Abdul-Aziz OI, Tang J, Ishtiaq KS, Morkeski K, Mora J, Kroeger KD (2016) Carbon dioxide fluxes reflect plant zonation and belowground biomass in a coastal marsh. Ecosphere 7(11):1–48.  https://doi.org/10.1002/ecs2.1560 CrossRefGoogle Scholar
  116. Nahlik AM, Fennessy MS (2016) Carbon storage in US wetlands. Nat Commun 7:13835.  https://doi.org/10.1038/ncomms13835 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Narayan S, Beck MW, Wilson P, Thomas CJ, Guerrero A, Shepard CC, Trespalacios D (2016) Coastal wetlands and flood damage reduction: using risk industry-based models to assess natural defenses in the Northeastern USA. Lloyd’s Tercentenary Research Foundation, London. Sci Rep 7(1):1–23. https://conservationgateway.org/ConservationPractices/Marine/crr/library/Documents/CoastalWetlandsandFloodDamageReductionReport.pdf. Accessed 21 Jan 2018Google Scholar
  118. National Ice and Snow Data Center (2018) Advancing knowledge of Earth’s frozen regions. https://nsidc.org/cryosphere/glaciers/quickfacts.html. Accessed 30 July 2018
  119. Natural Resources Defense Council (2010) Climate change, water, and risk: current water demands are not sustainable. https://www.nrdc.org/sites/default/files/WaterRisk.pdf. Accessed 29 Jan 2018
  120. Neubauer SC (2014) On the challenges of modeling the net radiative forcing of wetlands: reconsidering Mitsch et al. 2013. Landsc Ecol 29(4):571–577.  https://doi.org/10.1007/s10980-014-9986-1 CrossRefGoogle Scholar
  121. Neubauer SC, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18(6):1000–1013.  https://doi.org/10.1007/s10021-015-9879-4 CrossRefGoogle Scholar
  122. Newman RH, Tate KR (1980) Soil phosphorus characterization by 31P-nuclear magnetic resonance. Commun Soil Sci Plant Anal 11:835–842CrossRefGoogle Scholar
  123. Nicholls RJ (2004) Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Global Environ Chang 14(1):69–86.  https://doi.org/10.1016/j.gloenvcha.2003.10.007 CrossRefGoogle Scholar
  124. Northern Great Plains Floristic Quality Assessment Panel (2001) Coefficients of conservatism for the vascular flora of the Dakotas and adjacent grasslands. U.S. Geological Survey, Biological Resources Division, Information and Technology Report USGS/BRD/ITR-2001-0001Google Scholar
  125. Osborne TZ, Newman S, Kalla P, Scheidt DJ, Bruland GL, Cohen MJ, Scinto LJ, Ellis LR (2011) Landscape patterns of significant soil nutrients and contaminants in the Greater Everglades Ecosystem: past, present, and future. Crit Rev Environ Sci Technol 41(6):121–148CrossRefGoogle Scholar
  126. Osborne TZ, Bochnak AMK, Vandam B, Duffy S, Keenan L, Inglett KS, Inglett PW, Sihi D (2014) Hydrologic effects on soil stability—loss, formation, and nutrient fluxes. Final report. St. Johns River Water Management District, Palatka, FLGoogle Scholar
  127. Osborne TZ, Fitz HC, Davis S (2017) Restoring the foundation of the Everglades: assessment of edaphic responses to hydrologic restoration scenarios. Restor Ecol 25(S1):59–71CrossRefGoogle Scholar
  128. Payette S (1993) The range limit of boreal tree species in Québec-Labrador: an ecological and palaeoecological interpretation. Rev Pal Pal 79:7–30CrossRefGoogle Scholar
  129. Pedersen GK, Andersen LA, Lundsteen EB, Petersen HI, Bojesen-Koefoed JA, Nytoft HP (2006) Depositional environments, organic maturity and petroleum potential of the Cretaceous coal-bearing Atane Formation at Qullisat, Nuussuaq Basin, West Greenland. J Petrol Geol 29:3–26CrossRefGoogle Scholar
  130. Phelps SA, Bochnak AMK, Ponzio KJ (2015) Vegetation response and elevation change in a perturbed hydrologic regime: the subsidy-stress gradient in a peat-based floodplain marsh. Paper presented at the annual conference of the Society of Wetland Scientists, Providence, RI, USA, 3 June 2015Google Scholar
  131. Potthoff M, Steenwerth K, Jackson L, Drenovsky R, Scow K, Joergensen R (2005) Soil microbial community composition as affected by restoration practices in California grassland. Soil Biol Biochem 38:1851–1860CrossRefGoogle Scholar
  132. Qu L, Makoto K, Choi DS, Quoreshi AM, Koike T (2009) The role of ectomycorrhiza in boreal forest ecosystem. In: Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost ecosystems: Siberian larch forests, Ecological studies, vol 209. Springer, Dordrecht, pp 413–425CrossRefGoogle Scholar
  133. Raabe EA, Stumpf RP (2016) Expansion of tidal marsh in response to sea-level rise on the Gulf Coast of Florida, USA. Estuar Coast 39:145–157CrossRefGoogle Scholar
  134. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  135. Read DJ (1984) The structure and function of the vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 215–240Google Scholar
  136. Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC, Boca Raton, FLCrossRefGoogle Scholar
  137. Reddy KR, DeLaune RD, DeBusk WF, Koch MS (1993) Long-term nutrient accumulation rates in the Everglades. Soil Sci Soc Am J 57:1147–1155CrossRefGoogle Scholar
  138. Rheinhardt RD, Brinson MM, Farley PM (1997) Applying wetland reference data to functional assessment, mitigation, and restoration. Wetlands 17:195–215CrossRefGoogle Scholar
  139. Rheinhardt RD, Rheinhardt MC, Brinson MM, Faser KE Jr (1999) Application of reference data for assessing and restoring headwater ecosystems. Restor Ecol 7:241–251CrossRefGoogle Scholar
  140. Richardson CJ (1999) The role of wetlands in storage, release and cycling of phosphorus on the landscape: a 25 year retrospective. In: Reddy KR (ed) Phosphorus biogeochemistry in sub-tropical ecosystems. CRC/Lewis, Boca Raton, FL, pp 47–68Google Scholar
  141. Ricketts BD, Embry AF (1984) Summary of geology and resource potential of coal deposits in the Canadian Arctic Archipelago. Bull Can Petrol Geol 32:359–371Google Scholar
  142. Rosenberg H (1964) Distribution and fate of 2-aminoethylphosphonic acid in Tetrahymena. Nature 203:299–300PubMedCrossRefGoogle Scholar
  143. Rubæk GH, Guggenberger G, Zech W, Christensen BT (1999) Organic phosphorous in soil size separates characterized by phosphorous-31 nuclear magnetic resonance and resin extraction. Soil Sci Soc Am J 63:1123–1132CrossRefGoogle Scholar
  144. Saha AK, Saha S, Sadle J, Jiang J, Ross MS, Price RM, Sternberg L, Wendelberger KS (2011) Sea level rise and South Florida coastal forests. Climatic Change 107:81–108CrossRefGoogle Scholar
  145. Sakai A (1971) Freezing resistance of relicts from the Arcto-Tertiary flora. New Phytol 70:1199–1205CrossRefGoogle Scholar
  146. Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptation to freezing stress. Springer, New YorkCrossRefGoogle Scholar
  147. Schloemer-Jäger A (1958) Alttertiäre pflanzen aus flözen der brögger-halbinsel spitzbergens. Palaeontogr Abt B 104:39–103Google Scholar
  148. Schuyt K, Brander L (2004) Living waters: conserving the source of life: the economic values of the world’s wetlands. World Wildlife Fund, Gland. https://www.cbd.int/financial/doc/wwf-wetlandsvalues2004.pdf. Accessed 29 Jan 2018Google Scholar
  149. Simpson LT, Osborne TZ, Duckett LJ, Feller IC (2017) Carbon storages along a climate induced coastal wetland gradient. Wetlands 37(6):1023–1035.  https://doi.org/10.1007/s13157-017-0937-x CrossRefGoogle Scholar
  150. Sloan LC (1998) Polar stratospheric clouds: a high-latitude warming mechanism in an ancient polat greenhouse world. Geophys Res Let 25:3517–3520CrossRefGoogle Scholar
  151. Sloan LC, Huber M, Ewing A (1999) Polar stratospheric cloud forcing in a greenhouse world. In: Abrantes F, Mix AC (eds) Reconstructing ocean history: a window into the future. Kluwer Academic/Plenum, New York, pp 272–293Google Scholar
  152. Smith SE, Read DJ (2008) Mycorrhizal symbioses, 3rd edn. Academic, LondonGoogle Scholar
  153. Solomon D, Lehman J (2000) Loss of phosphorous from soil in semi-arid northern Tanzania as a result of cropping: evidence from sequential extraction and 31P-NMR spectroscopy. Eur J Soil Sci 51:699–708CrossRefGoogle Scholar
  154. Solomon D, Lehmann J, Mamo T, Fritzsche F, Zech W (2002) Phosphorus forms and dynamics as influenced by land use changes in the sub-humid Ethiopian highlands. Geoderma 105:21–48CrossRefGoogle Scholar
  155. Sterling M, Padera C (1998) The Upper St. Johns River Basin Project: the environmental transformation of a public flood control project. Professional Paper SJ97-PP1, St. John River Water Management District, Palatka, FLGoogle Scholar
  156. Stevens DL Jr, Olsen AR (1999) Spatially restricted surveys over time for aquatic resources. J Agr Biol Environ Stat 4:415–428CrossRefGoogle Scholar
  157. Stevens DL Jr, Olsen AR (2000) Spatially restricted random sampling designs for design-based and model-based estimation. In: Accuracy 2000: Proceedings of the 4th international symposium on spatial accuracy assessment in natural resources and environmental sciences, Delft University Press, The Netherlands, pp 609–616Google Scholar
  158. Stewart RE, Kantrud HA (1971) Classification of natural ponds and lakes in the Glaciated Prairie Region. Resource Publication 92, U.S. Department of the Interior, Fish and Wildlife Service, Washington, DCGoogle Scholar
  159. Sumann M, Amelung W, Haumaier L, Zech W (1998) Climatic effects on soil organic phosphorus in the North American Great Plains identified by phosphorus-31 nuclear magnetic resonance. Soil Sci Soc Am J 62:1580–1586CrossRefGoogle Scholar
  160. Sundareshwar PV, Morris JT, Pellechia PJ, Cohen H, Porter DE, Jones BC (2001) Occurrence and ecological significance of pyrophosphate in estuaries. Limnol Oceanogr 46:1570–1577CrossRefGoogle Scholar
  161. Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B (2003) Phosphorus limitation of coastal ecosystem processes. Science 299:563–565PubMedCrossRefGoogle Scholar
  162. Sundareshwar PV, Richardson CJ, Gleason RA, Pellechia PJ, Honomichl S (2009) Nature versus nurture: functional assessment of restoration effects on wetland services using nuclear magnetic resonance spectroscopy. Geophys Res Lett 36:L03402.  https://doi.org/10.1029/2008GL036385 CrossRefGoogle Scholar
  163. Sveshnikova IN, Budantsev LY (1969) Florulae fossiles arcticae, vol 1. Nauka, LeningradGoogle Scholar
  164. Tate KR, Salcedo I (1988) Phosphorus control of soil organic matter accumulation and cycling. Biogeochemistry 5:99–107CrossRefGoogle Scholar
  165. Tiessen H, Stewart JWB, Moir JO (1983) Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 60-90 years of cultivation. J Soil Sci 34:815–823CrossRefGoogle Scholar
  166. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720CrossRefGoogle Scholar
  167. Toor GS, Condron LM, Cade-Menun BJ, Di HJ, Cameron KC (2005) Preferential phosphorus leaching from an irrigated grassland soil. Eur J Soil Sci 56:155–167CrossRefGoogle Scholar
  168. Torio DD, Chmura GL (2013) Assessing coastal squeeze of tidal wetlands. J Coast Res 29(5):1049–1061.  https://doi.org/10.2112/JCOASTRES-D-12-00162.1 CrossRefGoogle Scholar
  169. Troxler TG, Childers DL, Madden CJ (2014) Drivers of decadal-scale change in southern Everglades wetland macrophyte communities of the coastal ecotone. Wetlands 34:81–90CrossRefGoogle Scholar
  170. Turner BL, Mahieu N, Condron LN (2003) The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31P NMR spectroscopy. Org Geochem 34:1199–1210CrossRefGoogle Scholar
  171. Turrión MB, Glaser B, Solomon D, Ni A, Zech W (2000) Effects of deforestation on phosphorus pools in mountain soils of the Allay range, Khyrgyzia. Biol Fertil Soils 31:134–142CrossRefGoogle Scholar
  172. United States Environmental Protection Agency (2010) Florida water quality assessment report: 303(d) listed waters for 2010. United States Environmental Protection Agency, Washington, DC. https://ofmpub.epa.gov/waters10/attains_waterbody.control?p_list_id=FL2893V&p_state=FL&p_cycle=2010#attainments, accessed 12 Dec 2017
  173. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310PubMedCrossRefGoogle Scholar
  174. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423.  https://doi.org/10.1111/nph.13288 CrossRefPubMedGoogle Scholar
  175. Williams CJ, Johnson AH, LePage BA, Vann DR, Sweda T (2003) Reconstruction of Tertiary Metasequoia forests II. Structure, biomass and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29:271–292CrossRefGoogle Scholar
  176. Williams CJ, LePage BA, Johnson AH, Vann DR (2009) Structure, biomass, and productivity of a late Paleocene Arctic forest. Proc Acad Nat Sci Phila 158:107–127CrossRefGoogle Scholar
  177. Williams CJ, Trostle KD, Sunderland D (2010) Fossil wood in coal-forming environments of the late Paleocene-early Eocene Chickaloon Formation. Palaeogeogr Palaeoclimatol Palaeoecol 295:363–375CrossRefGoogle Scholar
  178. Wingard GL, Lorenz JL (2014) Integrated conceptual model and habitat indices for the southwest Florida coastal wetlands. Ecol Indicat 44(S1):92–107CrossRefGoogle Scholar
  179. Woodward RT, Wui YS (2001) The economic value of wetland services: a meta-analysis. Ecol Econ 37(2):257–270.  https://doi.org/10.1016/S0921-8009(00)00276-7 CrossRefGoogle Scholar
  180. Zhu Q, Peng C, Liu J, Jiang H, Fang X, Chen H, He JS (2016) Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Sci Rep 6(1):38020.  https://doi.org/10.1038/srep38020 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kimberli J. Ponzio
    • 1
    Email author
  • Todd Z. Osborne
    • 2
    • 3
  • Gillian T. Davies
    • 4
    • 5
  • Ben LePage
    • 6
    • 7
  • Pallaoor V. Sundareshwar
    • 8
    • 9
  • S. J. Miller
    • 1
  • A. M. K. Bochnak
    • 10
  • S. A. Phelps
    • 3
  • M. Q. Guyette
    • 1
  • K. M. Chowanski
    • 8
  • L. A. Kunza
    • 8
  • P. J. Pellechia
    • 11
  • R. A. Gleason
    • 12
  • C. Sandvik
    • 8
  1. 1.St. Johns River Water Management DistrictPalatkaUSA
  2. 2.Estuarine Biogeochemistry Laboratory, Whitney Laboratory for Marine BioscienceUniversity of FloridaSt. AugustineUSA
  3. 3.Wetland Biogeochemistry Laboratory, Soil and Water Sciences DepartmentUniversity of FloridaGainesvilleUSA
  4. 4.BSC Group, Inc.WorcesterUSA
  5. 5.Global Development and Environment Institute, Tufts UniversityMedfordUSA
  6. 6.Pacific Gas and Electric CompanySan RamonUSA
  7. 7.Academy of Natural SciencesPhiladelphiaUSA
  8. 8.Department of Atmospheric SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA
  9. 9.United States Agency for International DevelopmentWashingtonUSA
  10. 10.Environmental Consulting & Technology, Inc.GainesvilleUSA
  11. 11.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA
  12. 12.Northern Prairie Wildlife Research CenterU.S. Geological SurveyJamestownUSA

Personalised recommendations