Fungal Community for Novel Secondary Metabolites

  • Enespa
  • Prem Chandra
Part of the Fungal Biology book series (FUNGBIO)


Natural products are important not only in the environment but also as useful compounds in various applications as in medicine or as phytopathogens. An enormous number of such compounds have been derived from fungal communities colonizing various habitats. Traditionally, the isolates of a fungal community have been explored as “biofactories” of novel bioactive substances, and they have not disappointed. Among the extracts and pure substances obtained from culture broths or fungal biomass, some have exerted antifungal and antibacterial activities ranging from moderate to powerful when tested on the pathogenic bacterial and fungal strains resistant to the antibiotics currently in use. Fungal communities that colonize the internal tissues of plants have been proven to produce a large number of structurally diverse novel secondary metabolites. Such as, the compound 3-O-methylfunicone isolated from Talaromyces sp., from mangrove environment, has shown antifungal, antitumor, and lipid-lowering properties. Petriella sp., an endophyte of the sponge Suberites domuncula produced a cyclic tetra peptide compound exhibited cytotoxicity against murine L5178Y lymphoma cells at an ED50 value of < 0.1 μg/ml. In this chapter, we reexamine the accumulated data on fungal communities isolated from plants and microbes that produce novel secondary metabolites with antimicrobial activity against plant and human pathogenic fungal and bacterial strains.


Bioactivity Biofactories Fungal community Secondary metabolitesVolatile compounds 


  1. Abreu AC, McBain AJ, Simoes M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29(9):1007–1021CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alurappa R, Chowdappa S, Narayanaswamy R, Sinniah UR, Mohanty SK, Swamy MK (2018) Endophytic fungi and bioactive metabolites production: an update. In: Microbial Biotechnology. Springer, Singapore, pp 455–482CrossRefGoogle Scholar
  3. Arivudainambi UE, Anand TD, Shanmugaiah V, Karunakaran C, Rajendran A (2011) Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus. FEMS Immunol Med Microbiol 61(3):340–345CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):3376CrossRefGoogle Scholar
  5. Barbieri DS, Tonial F, Lopez PV, Maia BHS, Santos GD, Ribas MO, Vicente VA (2014) Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch Oral Biol 59(9):887–896CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bassman JH (2004) Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities. Photochem Photobiol 79(5):382–398CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beck JJ (2012) Addressing the complexity and diversity of agricultural plant volatiles: a call for the integration of laboratory-and field-based analyses. J Agric Food Chem 60(5):1153–1157CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bedi A, Adholeya A, Deshmukh SK (2018) Novel anticancer compounds from endophytic fungi. Curr Biotechnol 7(3):168–184CrossRefGoogle Scholar
  9. Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260PubMedPubMedCentralGoogle Scholar
  10. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58(1):1CrossRefGoogle Scholar
  11. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bezerra JD, Nascimento CC, Barbosa RDN, da Silva DC, Svedese VM, Silva-Nogueira EB, Souza-Motta CM (2015) Endophytic fungi from medicinal plant Bauhinia forficata: diversity and biotechnological potential. Braz J Microbiol 46(1):49–57CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P (2008) Headspace sampling of the volatile fraction of vegetable matrices. J Chromatogr 1184(1–2):220–233CrossRefGoogle Scholar
  14. Bills GF, Gloer JB, An Z (2013) Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr Opin Microbiol 16(5):549–565CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Trethewey RN (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9(9):418–425CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact 26(8):835–843CrossRefPubMedPubMedCentralGoogle Scholar
  17. Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Plamann M (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68(1):1–108CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brandt K, Mølgaard JP (2001) Organic agriculture: does it enhance or reduce the nutritional value of plant foods? J Sci Food Agric 81(9):924–931CrossRefGoogle Scholar
  19. Briard B, Heddergott C, Latgé JP (2016) Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. MBio 7(2):e00219–e00216CrossRefPubMedPubMedCentralGoogle Scholar
  20. Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529(7586):336CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cai L, Xu G, Shi C, Guo D, Wang X, Luo J (2015) Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 37:456–468CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cardwell KF, Kling JG, Maziya-Dixon B, Bosque-Perez NA (2000) Interactions between Fusarium verticillioides, Aspergillus flavus, and insect infestation in four maize genotypes in lowland Africa. Phytopathology 90(3):276–284CrossRefPubMedPubMedCentralGoogle Scholar
  23. Carey JR, Suslick KS, Hulkower KI, Imlay JA, Imlay KR, Ingison CK, Wittrig AE (2011) Rapid identification of bacteria with a disposable colorimetric sensing array. J Am Chem Soc 133(19):7571–7576CrossRefPubMedPubMedCentralGoogle Scholar
  24. Carvalho JM, Paixão LKOD, Dolabela MF, Marinho PSB, Marinho AMDR (2016) Phytosterols isolated from endophytic fungus Colletotrichum gloeosporioides (Melanconiaceae). Acta Amaz 46(1):69–72CrossRefGoogle Scholar
  25. Cellini A, Biondi E, Blasioli S, Rocchi L, Farneti B, Braschi I, Spinelli F (2016) Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose. Ann Appl Biol 168(3):409–420CrossRefGoogle Scholar
  26. Chabner BA, Roberts TG Jr (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5(1):65CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chagas FO, de Cassia Pessotti R, Caraballo-Rodríguez AM, Pupo MT (2018) Chemical signaling involved in plant–microbe interactions. Chem Soc Rev 47(5):1652–1704CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chaturvedi P (2015) Characterization of foliar endophytic fungi from Centella asiatica (L.) urban as a promising source of bioactive metabolites (Doctoral dissertation, GB Pant University of Agriculture and Technology, Pantnagar-263145)Google Scholar
  29. Chakravarty K, Gaur S (2018) Fungal endophytes as novel sources of anticancer compounds. In: Anticancer plants: natural products and biotechnological implements. Springer, Singapore, pp 1–18Google Scholar
  30. Chan EM, Mathies RA, Alivisatos AP (2003) Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett 3(2):199–201CrossRefGoogle Scholar
  31. Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19(5):275–283CrossRefGoogle Scholar
  32. Chandra P, Singh E (2016) Applications and mechanisms of plant growth-stimulating rhizobacteria. In: Plant–microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 37–62CrossRefGoogle Scholar
  33. Chang Q, Wang W, Regev-Yochay G, Lipsitch M, Hanage WP (2015) Antibiotics in agriculture and the risk to human health: how worried should we be? Evol Appl 8(3):240–247CrossRefPubMedPubMedCentralGoogle Scholar
  34. Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69(1):10–16CrossRefGoogle Scholar
  35. Cohen P (2002) Protein kinases–the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309CrossRefPubMedPubMedCentralGoogle Scholar
  36. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959CrossRefPubMedPubMedCentralGoogle Scholar
  37. Conrad KA, Rodriguez R, Salcedo EC, Rauceo JM (2018) The Candida albicans stress response gene Stomatin-Like Protein 3 is implicated in ROS-induced apoptotic-like death of yeast phase cells. PLoS One 13(2):e0192250CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582CrossRefPubMedPubMedCentralGoogle Scholar
  39. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta (BBA)-General Subject 1830(6):3670–3695CrossRefGoogle Scholar
  40. Dang L, Li G, Yang Z, Luo S, Zheng X, Zhang K (2010) Chemical constituents from the endophytic fungus Trichoderma ovalisporum isolated from Panax notoginseng. Ann Microbiol 60(2):317–320CrossRefGoogle Scholar
  41. Darabpour E, Ardakani MR, Motamedi H, Ronagh MT (2012) Isolation of a potent antibiotic producer bacterium, especially against MRSA, from northern region of the Persian Gulf. Bosn J Basic Med Sci 12(2):108CrossRefPubMedPubMedCentralGoogle Scholar
  42. David F, Sandra P (2007) Stir bar sorptive extraction for trace analysis. J Chromatogr 1152(1–2):54–69CrossRefGoogle Scholar
  43. Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17(12):4022–4034CrossRefPubMedPubMedCentralGoogle Scholar
  44. De Carvalho MP, Türck P, Abraham WR (2015) Secondary metabolites control the associated bacterial communities of saprophytic basidiomycotina fungi. Microbes Environ 30(2):196–198CrossRefPubMedPubMedCentralGoogle Scholar
  45. De la Rosa-García SC, Fuentes AF, Gómez-Cornelio S, Zagada-Domínguez U, Quintana P (2018) Structural characterization of antifungal CaZn2 (OH)6 2H2O nanoparticles obtained via mechanochemical processing. J Mater Sci 53:13758–13768CrossRefGoogle Scholar
  46. De Siqueira VM, Conti R, de Araújo JM, Souza-Motta CM (2011) Endophytic fungi from the medicinal plant Lippia sidoides Cham and their antimicrobial activity. Symbiosis 53(2):89–95CrossRefGoogle Scholar
  47. De Vries FT, Shade A (2013) Controls on soil microbial community stability under climate change. Front Microbiol 4:265CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Read ND (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980CrossRefPubMedPubMedCentralGoogle Scholar
  49. Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. J Microbial Biotechnol 3(5):544–563CrossRefGoogle Scholar
  50. Deepika VB, Murali TS, Satyamoorthy K (2016) Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: a review. Microbiol Res 182:125–140CrossRefPubMedPubMedCentralGoogle Scholar
  51. Demain AL, Vandamme EJ, Collins J, Buchholz K (2017) History of industrial biotechnology. Indust Biotechnol Microorganism 1:1–84Google Scholar
  52. Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715CrossRefPubMedPubMedCentralGoogle Scholar
  53. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78CrossRefPubMedPubMedCentralGoogle Scholar
  54. Dhillon GS, Brar SK, Verma M, Tyagi RD (2011) Recent advances in citric acid bio-production and recovery. Food Bioproc Tech 4(4):505–529CrossRefGoogle Scholar
  55. Ding G, Wang H, Li L, Song B, Chen H, Zhang H, Zou Z (2014) Trichodermone, a spiro-cytochalasan with a tetracyclic nucleus (7/5/6/5) skeleton from the plant endophytic fungus Trichoderma gamsii. J Nat Prod 77(1):164–167CrossRefPubMedPubMedCentralGoogle Scholar
  56. Dissanayake RK, Ratnaweera PB, Williams DE, Wijayarathne CD, Wijesundera RL, Andersen RJ, de Silva ED (2016) Antimicrobial activities of endophytic fungi of the Sri Lankan aquatic plant Nymphaea nouchali and chaetoglobosin A and C, produced by the endophytic fungus Chaetomium globosum. Mycology 7(1):1–8CrossRefPubMedPubMedCentralGoogle Scholar
  57. Dokuparthi SK, Manikanta P (2015) Phytochemical and pharmacological studies on Chrysanthemum coronarium L.: a review. J Drug Discov Ther 27:11–16Google Scholar
  58. Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47(3):187–200PubMedPubMedCentralGoogle Scholar
  59. Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Proksch P (2012) Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar Drugs 10(5):1081–1091CrossRefPubMedPubMedCentralGoogle Scholar
  60. Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703CrossRefPubMedPubMedCentralGoogle Scholar
  61. Eisenstein BI (1990) The polymerase chain reaction: a new method of using molecular genetics for medical diagnosis. J Med 322(3):178–183Google Scholar
  62. El Sheikha AF, Levin RE, Xu J (2018) Molecular techniques in food biology: safety, biotechnology, authenticity and traceability. Wiley, New York, pp 241–254CrossRefGoogle Scholar
  63. Elavarasi A, Rathna GS, Kalaiselvam M (2012) Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asian Pac J Trop Biomed 2(2):1081–1085CrossRefGoogle Scholar
  64. El-Hasan A, Buchenauer H (2009) Actions of 6-pentyl-alpha-pyrone in controlling seedling blight incited by Fusarium moniliforme and inducing defence responses in maize. J Phytopathol 157(11–12):697–707CrossRefGoogle Scholar
  65. Enespa, Chandra P (2017) Microbial volatiles as chemical weapons against pathogenic fungi. In: Volatiles and food security. Springer, Singapore, pp 227–254CrossRefGoogle Scholar
  66. Ens EJ, Bremner JB, French K, Korth J (2009) Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol Invasions 11(2):275–287CrossRefGoogle Scholar
  67. Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150(12):4023–4031CrossRefPubMedPubMedCentralGoogle Scholar
  68. Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206CrossRefPubMedPubMedCentralGoogle Scholar
  69. Fialho MB, Toffano L, Pedroso MP, Augusto F, Pascholati SF (2010) Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J Microbiol Biotechnol 26(5):925–932CrossRefGoogle Scholar
  70. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nature Biotechnol 18(11):1157CrossRefGoogle Scholar
  71. Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62(3):251–257CrossRefGoogle Scholar
  72. Fraser PD, Pinto MES, Holloway DE, Bramley PM (2000) Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24(4):551–558CrossRefPubMedPubMedCentralGoogle Scholar
  73. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75(4):583–609CrossRefPubMedPubMedCentralGoogle Scholar
  74. Fu XR, Sun ZC, Zhang MZ (2012) Experimental study of extract from Prunella vulgaris inducing B, T lymphoma cell apoptosis. Zhong Yao Cai= Zhongyaocai (J Chin Med Mat) 35(3):433–438Google Scholar
  75. Gao H, Li G, Lou HX (2018) Structural diversity and biological activities of novel secondary metabolites from endophytes. Molecules 23(3):646CrossRefPubMedPubMedCentralGoogle Scholar
  76. Gao J, Chen L, Yuan K, Huang H, Yan Z (2013) Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass. Bioresour Technol 150:352–358CrossRefPubMedPubMedCentralGoogle Scholar
  77. Gao P, Xu G (2015) Mass-spectrometry-based microbial metabolomics: recent developments and applications. Anal Bioanal Chem 407(3):669–680CrossRefPubMedPubMedCentralGoogle Scholar
  78. Gao Z, Zhang B, Liu H, Han J, Zhang Y (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39CrossRefGoogle Scholar
  79. Gerke J, Braus GH (2014) Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Appl Microbiol Biotechnol 98(20):8443–8845CrossRefPubMedPubMedCentralGoogle Scholar
  80. Giannoukos S, Marshall A, Taylor S, Smith J (2017) Molecular communication over gas stream channels using portable mass spectrometry. J Am Soc Mass Spectrom 28(11):2371–2383CrossRefPubMedPubMedCentralGoogle Scholar
  81. Gnansounou E, Alves CM, Raman JK (2017) Multiple applications of vetiver grass–a review. Int J Environ Sci 2:125–141Google Scholar
  82. Gómez-Rivera A, González-Cortazar M, Herrera-Ruíz M, Zamilpa A, Rodríguez-López V (2018) Sessein and isosessein with anti-inflammatory, antibacterial and antioxidant activity isolated from Salvia sessei Benth. J Ethnopharmacol 217:212–219CrossRefPubMedPubMedCentralGoogle Scholar
  83. Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Rupela O (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30(8):1070–1078CrossRefGoogle Scholar
  84. Greve H, Mohamed IE, Pontius A, Kehraus S, Gross H, König GM (2010) Fungal metabolites: structural diversity as incentive for anticancer drug development. Phytochem Rev 9(4):537–545CrossRefGoogle Scholar
  85. Güllüce M, Sökmen M, Daferera D, Aǧar G, Özkan H, Kartal N, Şahin F (2003) In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J Agric Food Chem 51(14):3958–3965Google Scholar
  86. Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526CrossRefPubMedPubMedCentralGoogle Scholar
  87. Gutiérrez HR, Perea-López N, Elías AL, Berkdemir A, Wang B, Lv R, Terrones M (2012) Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 13(8):3447–3454CrossRefPubMedPubMedCentralGoogle Scholar
  88. Hajslova J, Cajka T, Vaclavik L (2011) Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. Trends Analyt Chem 30(2):204–218CrossRefGoogle Scholar
  89. Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28(4):384–410CrossRefGoogle Scholar
  90. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13(19–20):894–901CrossRefPubMedPubMedCentralGoogle Scholar
  91. Harvey SG, Sams CE (2000) 401 effects of allyl isothiocyanate on mycelial growth from germinating sclerotia of Sclerotium rolfsii. Hortic Sci 35(3):462–462Google Scholar
  92. Heitefuss R (2011) Management of fungal plant pathogens. J Phytopathol 159(2):136–136CrossRefGoogle Scholar
  93. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67(3):283–335CrossRefGoogle Scholar
  94. Hock OG, Cheng HC, Fang VLB, Yong WY, Shing WL (2018) Isolation and identification of potential fungal species for spent engine lubrication oil remediation in Peninsular Malaysia. Remediat J 28(3):91–95CrossRefGoogle Scholar
  95. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639CrossRefPubMedPubMedCentralGoogle Scholar
  96. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33(163):173Google Scholar
  97. Ichikawa S (1971) Peristalsis. Nihon seirigaku zasshi. J Phys Soc Jpn 33(1):116–125Google Scholar
  98. Ip M, Lui SL, Poon VK, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55(1):59–63CrossRefPubMedPubMedCentralGoogle Scholar
  99. Jeleń HH, Grabarkiewicz-Szczȩsna J (2005) Volatile compounds of Aspergillus strains with different abilities to produce ochratoxin A. J Agric Food Chem 53(5):1678–1683CrossRefPubMedPubMedCentralGoogle Scholar
  100. Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231CrossRefPubMedPubMedCentralGoogle Scholar
  101. Jiménez-Romero C, Rodríguez AD, Nam S (2017) Plakortinic acids A and B: cytotoxic cycloperoxides with a bicyclo [4.2. 0] octene unit from sponges of the genera Plakortis and Xestospongia. Org Lett 19(6):1486–1489CrossRefPubMedPubMedCentralGoogle Scholar
  102. Jurado M, López MJ, Suárez-Estrella F, Vargas-García MC, López-González JA, Moreno J (2014) Exploiting composting biodiversity: study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting. Bioresour Technol 162:283–293CrossRefPubMedPubMedCentralGoogle Scholar
  103. Kai M, Crespo E, Cristescu SM, Harren FJ, Francke W, Piechulla B (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88(4):965–976CrossRefPubMedPubMedCentralGoogle Scholar
  104. Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6(151):1–23Google Scholar
  105. Karaman I, Şahin F, Güllüce M, Öǧütçü H, Şengül M, Adıgüzel A (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J Ethnopharmacol 85(2-3):231–235CrossRefPubMedPubMedCentralGoogle Scholar
  106. Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11(4):487–505CrossRefGoogle Scholar
  107. Kesting JR, Olsen L, Staerk D, Tejesvi MV, Kini KR, Prakash HS, Jaroszewski JW (2011) Production of unusual dispiro metabolites in Pestalotiopsis virgatula endophyte cultures: HPLC-SPE-NMR, electronic circular dichroism, and time-dependent density-functional computation study. J Nat Prod 74(10):2206–2215CrossRefPubMedPubMedCentralGoogle Scholar
  108. Kettering M, Valdivia C, Sterner O, Anke H, Thines E (2005) Heptemerones A–G, seven novel diterpenoids from Coprinus heptemerus: producing organism, fermentation, isolation and biological activities. J Antibiot (Tokyo) 58(6):390CrossRefGoogle Scholar
  109. Khan R, Shahzad S, Choudhary MI, Khan SA, Ahmad A (2010) Communities of endophytic fungi in medicinal plant Withania somnifera. Pak J Bot 42(2):1281–1287Google Scholar
  110. Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Strobel GA (2009) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58(3):233–238CrossRefPubMedPubMedCentralGoogle Scholar
  111. Khater HF (2012) Prospects of botanical biopesticides in insect pest management. Pharmacologia 3(12):641–656CrossRefGoogle Scholar
  112. Kjer J, Wray V, Edrada-Ebel R, Ebel R, Pretsch A, Lin W, Proksch P (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72(11):2053–2057CrossRefGoogle Scholar
  113. Knight V, Sanglier JJ, DiTullio D, Braccili S, Bonner P, Waters J, Zhang L (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 62(5-6):446–458CrossRefPubMedPubMedCentralGoogle Scholar
  114. Koitabashi M (2005) New biocontrol method for parsley powdery mildew by the antifungal volatiles-producing fungus Kyu-W63. J Gen Plant Pathol 71(4):280–284CrossRefGoogle Scholar
  115. Kulbe H, Levinson NR, Balkwill F, Wilson JL (2004) The chemokine network in cancer: much more than directing cell movement. Int J Dev Biol 48(5-6):489–496CrossRefPubMedPubMedCentralGoogle Scholar
  116. Kumar S, Kaushik N (2012) Metabolites of endophytic fungi as novel source of biofungicide: a review. Phytochem Rev 11(4):507–522CrossRefGoogle Scholar
  117. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798CrossRefPubMedPubMedCentralGoogle Scholar
  118. Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87CrossRefPubMedPubMedCentralGoogle Scholar
  119. Lange BM (2015) The evolution of plant secretory structures and emergence of terpenoid chemical diversity. Annu Rev Plant Biol 66:139–159CrossRefPubMedPubMedCentralGoogle Scholar
  120. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 66(9):4084–4090CrossRefPubMedPubMedCentralGoogle Scholar
  121. Lee SYJ (2015) Analysis of volatile organic compounds emitted by filamentous fungi and volatile-mediated plant growth. Doctoral dissertation. Rutgers University, Graduate School, New BrunswickGoogle Scholar
  122. Leelasuphakul W, Hemmanee P, Chuenchitt S (2008) Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biol Technol 48(1):113–121CrossRefGoogle Scholar
  123. Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40(7):1629–1636CrossRefGoogle Scholar
  124. Letai A, Coulombe PA, Fuchs E (1992) Do the ends justify the mean? Proline mutations at the ends of the keratin coiled-coil rod segment are more disruptive than internal mutations. J Cell Biol 116(5):1181–1195CrossRefPubMedPubMedCentralGoogle Scholar
  125. Leveau JH, Preston GM (2008) Bacterial mycophagy: definition and diagnosis of a unique bacterial–fungal interaction. New Phytol 177(4):859–876CrossRefPubMedPubMedCentralGoogle Scholar
  126. Li JWH, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier. Science 325(5937):161–165CrossRefPubMedPubMedCentralGoogle Scholar
  127. Li P, Lou J, Mou Y, Sun W, Shan T, Zhou L (2012) Effects of oligosaccharide elicitors from endophytic Fusarium oxysporum Dzf17 on diosgenin accumulation in Dioscorea zingiberensis seedling cultures. J Med Plant Res 6(38):5128–5134CrossRefGoogle Scholar
  128. Li X, Pan Z (2014) Dry-peeling of tomato by infrared radiative heating: part I. Model development. Food Biol Technol 7(7):1996–2004Google Scholar
  129. Li Y, Song YC, Liu JY, Ma YM, Tan RX (2005) Anti-Helicobacter pylori substances from endophytic fungal cultures. World J Microbiol Biotechnol 21(4):553–558CrossRefGoogle Scholar
  130. Lin S, Koh JJ, Aung TT, Lim F, Li J, Zou H, Tan DT (2017) Symmetrically substituted xanthone amphiphiles combat gram-positive bacterial resistance with enhanced membrane selectivity. J Med Chem 60(4):1362–1378CrossRefPubMedPubMedCentralGoogle Scholar
  131. Liu JY, Song YC, Zhang Z, Wang L, Guo ZJ, Zou WX, Tan RX (2004) Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J Biotechnol 114(3):279–287CrossRefPubMedPubMedCentralGoogle Scholar
  132. Liu K, Ding X, Deng B, Chen W (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36(9):1171CrossRefPubMedPubMedCentralGoogle Scholar
  133. Liu L, Niu S, Lu X, Chen X, Zhang H, Guo L, Che Y (2010) Unique metabolites of Pestalotiopsis fici suggest a biosynthetic hypothesis involving a Diels–Alder reaction and then mechanistic diversification. Chem Commun 46(3):460–462CrossRefGoogle Scholar
  134. Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78(2):241–247CrossRefPubMedPubMedCentralGoogle Scholar
  135. López-González JA, Suárez-Estrella F, Vargas-García MC, López MJ, Jurado MM, Moreno J (2015) Dynamics of bacterial microbiota during lignocellulosic waste composting: studies upon its structure, functionality and biodiversity. Bioresour Technol 175:406–416CrossRefPubMedPubMedCentralGoogle Scholar
  136. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3(6):510CrossRefPubMedPubMedCentralGoogle Scholar
  137. Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151(1):67–73CrossRefGoogle Scholar
  138. Ma YM, Li Y, Liu JY, Song YC, Tan RX (2004) Anti-Helicobacter pylori metabolites from Rhizoctonia sp. Cy064, an endophytic fungus in Cynodon dactylon. Fitoterapia 75(5):451–456CrossRefPubMedPubMedCentralGoogle Scholar
  139. Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Brakhage AA (2016) Regulation and role of fungal secondary metabolites. Annu Rev Genet 50:371–392CrossRefPubMedPubMedCentralGoogle Scholar
  140. Mapari SA, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28(6):300–307CrossRefPubMedPubMedCentralGoogle Scholar
  141. Martinez-Klimova E, Rodriguez-Pena K, Sánchez S (2017) Endophytes as sources of antibiotics. Biochem Pharmacol 134:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  142. Mégraud F, Lehours P (2007) Helicobacter pylori detection and antimicrobial susceptibility testing. Clin Microbiol Rev 20(2):280–322CrossRefPubMedPubMedCentralGoogle Scholar
  143. Meldrum C, Doyle MA, Tothill RW (2011) Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev 32(4):177PubMedPubMedCentralGoogle Scholar
  144. Meng LH, Li XM, Liu Y, Wang BG (2014) Penicibilaenes A and B, sesquiterpenes with a tricyclo [6.3. 1.01, 5] dodecane skeleton from the marine isolate of Penicillium bilaiae MA-267. Org Lett 16(23):6052–6055CrossRefPubMedPubMedCentralGoogle Scholar
  145. Milgram BC, Eskildsen K, Richter SM, Scheidt WR, Scheidt KA (2007) Microwave-assisted Piloty−Robinson synthesis of 3,4-disubstituted pyrroles. J Org Chem 72(10):3941–3944CrossRefPubMedPubMedCentralGoogle Scholar
  146. Miller KP, Wang L, Benicewicz BC, Decho AW (2015) Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 44(21):7787–7807CrossRefPubMedPubMedCentralGoogle Scholar
  147. Molitor D, Liermann JC, Berkelmann-Löhnertz B, Buckel I, Opatz T, Thines E (2012) Phenguignardic acid and guignardic acid, phytotoxic secondary metabolites from Guignardia bidwellii. J Nat Prod 75(7):1265–1269CrossRefPubMedPubMedCentralGoogle Scholar
  148. Monggoot S, Popluechai S, Gentekaki E, Pripdeevech P (2017) Fungal endophytes: an alternative source for production of volatile compounds from agarwood oil of Aquilaria subintegra. Microb Ecol 74(1):54–61CrossRefPubMedPubMedCentralGoogle Scholar
  149. Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26(2-3):73–83CrossRefGoogle Scholar
  150. Moree WJ, Phelan VV, Wu CH, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC (2012) Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci U S A 109(34):13811–13816CrossRefPubMedPubMedCentralGoogle Scholar
  151. Muharini R, Díaz A, Ebrahim W, Mándi A, Kurtán T, Rehberg N, Liu Z (2017) Antibacterial and cytotoxic phenolic metabolites from the fruits of Amorpha fruticosa. J Nat Prod 80(1):169–180CrossRefPubMedPubMedCentralGoogle Scholar
  152. Munaganti RK, Muvva V, Konda S, Naragani K, Mangamuri UK, Dorigondla KR, Akkewar D (2016) Antimicrobial profile of Arthrobacter kerguelensis VL-RK-09 isolated from mango orchards. Braz J Microbiol 47(4):1030–1038CrossRefPubMedPubMedCentralGoogle Scholar
  153. Muniyan R, Gurunathan J (2016) Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B. Pharm Biol 54(12):2814–2821CrossRefPubMedPubMedCentralGoogle Scholar
  154. Murooka Y, Yamshita M (2008) Traditional healthful fermented products of Japan. J Ind Microbiol Biotechnol 35(8):791CrossRefPubMedPubMedCentralGoogle Scholar
  155. Nandi CO, Ebiloma GU, Black JA, Nwodo NJ, Lemgruber L, Schmidt TJ, De Koning HP (2019) Potent Antitrypanosomal activities of 3-Aminosteroids against African Trypanosomes: investigation of cellular effects and of cross-resistance with existing drugs. Molecules 24(2):268CrossRefGoogle Scholar
  156. Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 9(1):e86882CrossRefPubMedPubMedCentralGoogle Scholar
  157. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59CrossRefPubMedPubMedCentralGoogle Scholar
  158. Nishino S, Parada RY, Ichiyanagi T, Maekawa N, Shimomura N, Otani H (2013) 1-Phenyl-3-pentanone, a volatile compound from the edible mushroom Mycoleptodonoides aitchisonii active against some phytopathogenic fungi. J Phytopathol 161(7-8):515–521CrossRefGoogle Scholar
  159. Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43CrossRefGoogle Scholar
  160. Oka K, Ishihara A, Sakaguchi N, Nishino S, Parada RY, Nakagiri A, Otani H (2015) Antifungal activity of volatile compounds produced by an edible mushroom Hypsizygus marmoreus against phytopathogenic fungi. J Phytopathol 163(11-12):987–996CrossRefGoogle Scholar
  161. Paladini F, Pollini M, Sannino A, Ambrosio L (2015) Metal-based antibacterial substrates for biomedical applications. Biomacromolecules 16(7):1873–1885CrossRefPubMedPubMedCentralGoogle Scholar
  162. Pan F, Su TJ, Cai SM, Wu W (2017) Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds. Sci Rep 7:42008CrossRefPubMedPubMedCentralGoogle Scholar
  163. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259CrossRefPubMedPubMedCentralGoogle Scholar
  164. Perkowski J, Buśko M, Chmielewski J, Góral T, Tyrakowska B (2008) Content of trichodiene and analysis of fungal volatiles (electronic nose) in wheat and triticale grain naturally infected and inoculated with Fusarium culmorum. Int J Food Microbiol 126(1-2):127–134CrossRefPubMedPubMedCentralGoogle Scholar
  165. Pettit GR, Meng Y, Pettit RK, Herald DL, Cichacz ZA, Doubek DL, Richert L (2009) Antineoplastic agents. 556. Isolation and structure of Coprinastatin 1 from Coprinus cinereus. J Nat Prod 73(3):388–392CrossRefGoogle Scholar
  166. Proksch P, Putz A, Ortlepp S, Kjer J, Bayer M (2010) Bioactive natural products from marine sponges and fungal endophytes. Phytochem Rev 9(4):475–489CrossRefGoogle Scholar
  167. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97(21):9365–9375CrossRefPubMedPubMedCentralGoogle Scholar
  168. Qin S, Xing K, Jiang JH, Xu LH, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89(3):457–473CrossRefPubMedPubMedCentralGoogle Scholar
  169. Radić N, Štrukelj B (2012) Endophytic fungi. The treasure chest of antibacterial substances. Phytomedicine 19(14):1270–1284CrossRefPubMedPubMedCentralGoogle Scholar
  170. Radji M, Sumiati A, Rachmayani R, Elya B (2011) Isolation of fungal endophytes from Garcinia mangostana and their antibacterial activity. Afr J Biotechnol 10(1):103–107Google Scholar
  171. Ramasamy K, Lim SM, Bakar HA, Ismail N, Ismail MS, Ali MF, Cole AL (2010) Antimicrobial and cytotoxic activities of Malaysian endophytes. Phytother Res Int J Pharma Toxicol Eva Nat Prod Derivat 24(5):640–643Google Scholar
  172. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2018a) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research. Springer, Cham. Scholar
  173. Rana KL, Kour D, Yadav AN (2018b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30Google Scholar
  174. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceedings of 86th Annual Session of NASI & Symposium on “Science, Technology and Entrepreneurship for Human Welfare in The Himalayan Region”, p 80Google Scholar
  175. Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C (2010) Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 87(3):899–911CrossRefPubMedPubMedCentralGoogle Scholar
  176. Ridgway K, Lalljie SP, Smith RM (2010) Analysis of food taints and off-flavours: a review. Food Addit Contam 27(2):146–168CrossRefGoogle Scholar
  177. Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100(1-2):80–84CrossRefPubMedPubMedCentralGoogle Scholar
  178. Rohlfs M, Churchill AC (2011) Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol 48(1):23–34CrossRefPubMedPubMedCentralGoogle Scholar
  179. Rosa LH, Queiroz SC, Moraes RM, Wang X, Techen N, Pan Z, Wedge DE (2013) Coniochaeta ligniaria: antifungal activity of the cryptic endophytic fungus associated with autotrophic tissue cultures of the medicinal plant Smallanthus sonchifolius (Asteraceae). Symbiosis 60(3):133–142CrossRefGoogle Scholar
  180. Rukachaisirikul V, Trisuwan K, Sukpondma Y, Phongpaichit S (2008) A new benzoquinone derivative from the leaves of Garcinia parvifolia. Arch Pharm Res 31(1):17–20CrossRefPubMedPubMedCentralGoogle Scholar
  181. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29(1):319–343CrossRefGoogle Scholar
  182. Sarrocco S (2016) Dung-inhabiting fungi: a potential reservoir of novel secondary metabolites for the control of plant pathogens. Pest Manag Sci 72(4):643–652CrossRefPubMedPubMedCentralGoogle Scholar
  183. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8(1):1–10PubMedPubMedCentralGoogle Scholar
  184. Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4:519–537CrossRefGoogle Scholar
  185. Saxena S, Meshram V, Kapoor N (2015) Muscodor tigerii sp. nov.: volatile antibiotic producing endophytic fungus from the Northeastern Himalayas. Ann Microbiol 65(1):47–57CrossRefGoogle Scholar
  186. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340CrossRefPubMedPubMedCentralGoogle Scholar
  187. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760CrossRefPubMedPubMedCentralGoogle Scholar
  188. Schippers B, Bakker AW, Bakker PA (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25(1):339–358CrossRefGoogle Scholar
  189. Schlingmann G, Taniguchi T, He H, Bigelis R, Yang HY, Koehn FE, Berova N (2007) Reassessing the structure of pyranonigrin. J Nat Prod 70(7):1180–1187CrossRefPubMedPubMedCentralGoogle Scholar
  190. Schoeman MW, Webber JF, Dickinson DJ (1999) The development of ideas in biological control applied to forest products. Int Biodeterior Biodegrad 43(3):109–123CrossRefGoogle Scholar
  191. Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004CrossRefGoogle Scholar
  192. Schulz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Döring D (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99(8):1007–1015CrossRefGoogle Scholar
  193. Scotter JM, Langford VS, Wilson PF, McEwan MJ, Chambers ST (2005) Real-time detection of common microbial volatile organic compounds from medically important fungi by selected ion flow tube-mass spectrometry (SIFT-MS). J Microbiol Methods 63(2):127–134CrossRefPubMedPubMedCentralGoogle Scholar
  194. Septama AW, Panichayupakaranant P (2015) Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods. Pharm Biol 53(11):1608–1613CrossRefPubMedPubMedCentralGoogle Scholar
  195. Somei M, Yamada F (2004) Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep 21(2):278–311CrossRefPubMedPubMedCentralGoogle Scholar
  196. Son H, Park S, Beuchat LR, Kim H, Ryu JH (2016) Inhibition of Staphylococcus aureus by antimicrobial biofilms formed by competitive exclusion microorganisms on stainless steel. Int J Food Microbiol 238:165–171CrossRefPubMedPubMedCentralGoogle Scholar
  197. Spina F, Cecchi G, Landinez-Torres A, Pecoraro L, Russo F, Wu B, Zotti M (2018) Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water. Plant Biosyst 152(3):474–488CrossRefGoogle Scholar
  198. Stasulli NM, Shank EA (2016) Profiling the metabolic signals involved in chemical communication between microbes using imaging mass spectrometry. Microbiol Rev 40(6):807–813Google Scholar
  199. Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJ (2013) Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycetes fungi. Microbiol Rev 37(1):67–93Google Scholar
  200. Stevens DA, Kan VL, Judson MA, MorrisonVA DS, Denning DW, Pankey GA (2000) Practice guidelines for diseases caused by Aspergillus. Clin Infect Dis 30(4):696–709CrossRefPubMedPubMedCentralGoogle Scholar
  201. Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165(4):913–922CrossRefGoogle Scholar
  202. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502CrossRefPubMedPubMedCentralGoogle Scholar
  203. Strobel R, Pratsinis SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17(45):4743–4756CrossRefGoogle Scholar
  204. Strobel G, Daisy B, Castillo U (2005) The biological promise of microbial endophytes and their natural products. Plant Pathol J 4(2):161–176CrossRefGoogle Scholar
  205. Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320(2):87–94CrossRefPubMedPubMedCentralGoogle Scholar
  206. Strobel GA (2014) Methods of discovery and techniques to study endophytic fungi producing fuel-related hydrocarbons. Nat Prod Rep 31(2):259–272CrossRefPubMedPubMedCentralGoogle Scholar
  207. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity: research perspectives. Springer-Verlag, New Delhi, pp 117–143. Scholar
  208. Takeda I, Umemura M, Koike H, Asai K, Machida M (2014) Motif-independent prediction of a secondary metabolism gene cluster using comparative genomics: application to sequenced genomes of Aspergillus and ten other filamentous fungal species. DNA Res 21(4):447–457CrossRefPubMedPubMedCentralGoogle Scholar
  209. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459CrossRefGoogle Scholar
  210. Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18(4):1052–1066CrossRefPubMedPubMedCentralGoogle Scholar
  211. Tenguria RK, Khan FN, Quereshi S (2011) Endophytes: -mines of pharmacological therapeutics. World J Sci Technol 1(5):127–149Google Scholar
  212. Thomson EL, Dennis JJ (2012) A Burkholderia cepacia complex non-ribosomal peptide-synthesized toxin is hemolytic and required for full virulence. Virulence 3(3):286–298CrossRefPubMedPubMedCentralGoogle Scholar
  213. Turner NW, Subrahmanyam S, Piletsky SA (2009) Analytical methods for determination of mycotoxins: a review. Anal Chim Acta 632(2):168–180CrossRefPubMedPubMedCentralGoogle Scholar
  214. Ulloa-Benítez Á, Medina-Romero YM, Sánchez-Fernández RE, Lappe-Oliveras P, Roque-Flores G, Duarte Lisci G, Macías-Rubalcava ML (2016) Phytotoxic and antimicrobial activity of volatile and semi-volatile organic compounds from the endophyte Hypoxylon anthochroum strain Blaci isolated from Bursera lancifolia (Burseraceae). J Appl Microbiol 121(2):380–400CrossRefPubMedPubMedCentralGoogle Scholar
  215. Verginer M, Leitner E, Berg G (2010) Production of volatile metabolites by grape-associated microorganisms. J Agric Food Chem 58(14):8344–8350CrossRefPubMedPubMedCentralGoogle Scholar
  216. Vihinen P, Kähäri VM (2002) Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 99(2):157–166CrossRefPubMedPubMedCentralGoogle Scholar
  217. Weber D (2009) Endophytic fungi, occurrence and metabolites. In: Physiology and genetics. Springer, Berlin, Heidelberg, pp 153–195CrossRefGoogle Scholar
  218. Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81(1–4):357–364CrossRefPubMedPubMedCentralGoogle Scholar
  219. Xiao ZE, Huang H, Shao C, Xia X, Ma L, Huang X, She Z (2013) Asperterpenols A and B, new sesterterpenoids isolated from a mangrove endophytic fungus Aspergillus sp. 085242. Org Lett 15(10):2522–2525CrossRefPubMedPubMedCentralGoogle Scholar
  220. Xing YM, Chen J, Cui JL, Chen XM, Guo SX (2011) Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietman. Curr Microbiol 62(4):1218–1224CrossRefPubMedPubMedCentralGoogle Scholar
  221. Xiong ZQ, Yang YY, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus × media. BMC Microbiol 13(1):71CrossRefPubMedPubMedCentralGoogle Scholar
  222. Xu J (2015) Bioactive natural products derived from mangrove-associated microbes. RSC Adv 5(2):841–892CrossRefGoogle Scholar
  223. Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05Google Scholar
  224. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13CrossRefGoogle Scholar
  225. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering: Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. Scholar
  226. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X (2018) Non-fullerene acceptors for organic solar cells. Nat Rev Mater 3:18003CrossRefGoogle Scholar
  227. Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27(18):2614–2615CrossRefPubMedPubMedCentralGoogle Scholar
  228. Yılmaz M, Türk AÖ, Tay T, Kıvanç M (2004) The antimicrobial activity of extracts of the lichen Cladonia foliacea and its usnic acid, atranorin, and fumarprotocetraric acid constituents. Z Naturforsch C 59(3–4):249–254CrossRefPubMedPubMedCentralGoogle Scholar
  229. Zaiyou J, Li M, Xiqiao H (2017) An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine (Baltim) 96(27):1–4CrossRefGoogle Scholar
  230. Zhang DD, Guo XJ, Wang YJ, Gao TG, Zhu BC (2017) Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Lett Appl Microbiol 65(6):512–519CrossRefPubMedPubMedCentralGoogle Scholar
  231. Zhang P, Li XM, Wang JN, Li X, Wang BG (2015) New butenolide derivatives from the marine-derived fungus Paecilomyces variotii with DPPH radical scavenging activity. Phytochem Lett 11:85–88CrossRefGoogle Scholar
  232. Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11(2):159–168CrossRefPubMedPubMedCentralGoogle Scholar
  233. Zhao J, Lin W, Ma X, Lu Q, Ma X, Bian G, Jiang L (2010) The protein kinase Hal5p is the high-copy suppressor of lithium-sensitive mutations of genes involved in the sporulation and meiosis as well as the ergosterol biosynthesis in Saccharomyces cerevisiae. Genomics 95(5):290–298CrossRefPubMedPubMedCentralGoogle Scholar
  234. Zheng YK, Miao CP, Chen HH, Huang FF, Xia YM, Chen YW, Zhao LX (2017) Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 41(3):353–360CrossRefPubMedPubMedCentralGoogle Scholar
  235. Zhou J, Xu J (2018) Chemistry and biodiversity of Rhizophora-derived endophytic fungi. In: Mangrove ecosystem ecology and function. IntechOpen, London, UKGoogle Scholar
  236. Zhu M, Zhang X, Feng H, Che Q, Zhu T, Gu Q, Li D (2016) Campyridones A–D, pyridone alkaloids from a mangrove endophytic fungus Campylocarpon sp. HDN13-307. Tetrahedron 72(37):5679–5683CrossRefGoogle Scholar
  237. Zou X, Niu S, Ren J, Li E, Liu X, Che Y (2011) Verrucamides A–D, antibacterial cyclopeptides from Myrothecium verrucaria. J Nat Prod 74(5):1111–1116CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Enespa
    • 1
  • Prem Chandra
    • 1
  1. 1.Department of Environmental MicrobiologySchool for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) UniversityLucknowIndia

Personalised recommendations