Advertisement

Fungal-Derived Natural Product: Synthesis, Function, and Applications

  • Amit Kumar Singh
  • Harvesh Kumar Rana
  • Abhay K. Pandey
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

The kingdom Fungi represents an incredibly rich and untapped source of bioactive natural products and seems to be an ideal agent for providing unique chemical compounds against various diseases. They are present in almost every ecological niche, making them the second largest kingdom after bacteria. It has been reported that earth is approximately estimated to have 1.5 million species and only 10% of it is known to scientific community. Several fungal secondary metabolites are useful for mankind, for example, penicillin a β-lactam antibiotic was isolated first time from Penicillium sp. Now, it is one of the widely used antibiotics worldwide. Fungal kingdom produces a variety of secondary metabolites, including all important classes like terpenes, terpenoids, alkaloids, and sugar derivatives. Though many fungal-derived natural products are known today, the production potential of fungus is significantly low because the expression of gene and corresponding secondary metabolites are cryptic/very less under laboratory condition. Therefore, scientific community around the world is searching for a chemical method to synthesize the secondary metabolite in laboratory at higher yield. Moreover, total in vitro chemical synthesis does not always signify a cost-effective method for producing fungal-derived natural compound, particularly when synthesizing compounds with complex chemistry. However, this issue can be overcome by utilizing heterologous production of secondary metabolites. Current chapter describes in detail the variety of secondary metabolites produced, their synthesis strategies via chemical and heterologous mode, as well as their biological applications.

Keywords

Alkaloids Anticancer Fungi Penicillin Secondary metabolites 

Notes

Acknowledgments

A.K.S. acknowledges the CSIR New Delhi for providing financial support in the form of Senior Research Fellowship. HKR acknowledges the UGC for providing financial support in the form of UGC-CRET fellowship. The authors are extremely grateful to Department of Science and Technology (DST-FIST), Government of India, New Delhi, for financial support to the Department of Biochemistry, University of Allahabad, India.

References

  1. Abraham WR (2001) Bioactive sesquiterpenes produced by fungi are they useful for humans as well. Curr Med Chem 8(6):583–606CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aiken AM, Allegranzi B, Scott JA, Mehtar S, Pittet D, Grundmann H (2014) Antibiotic resistance needs global solutions. Lancet Infect Dis 14:550–551CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alves MJ, Ferreira IC, Dias J, Teixeira V, Martins A, Pintado M (2012) A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med 78:1707–1718CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anke T, Oberwinkler F, Steglich W, Schramm G (1977) The strobilurins- new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. J Antibiot 30:806–810CrossRefPubMedPubMedCentralGoogle Scholar
  5. Archer DB (2000) Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11(5):478–483CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arnone A, Cardillo R, Meille SV, Nasini G, Tolazzi M (1994) Secondary mould metabolites. Part 47. Isolation and structure elucidation of clavilactones A-C, new metabolites from the fungus Clitocybe clavipes. J Chem Soc Perkin Trans 1:2165–2168CrossRefGoogle Scholar
  7. Ashfeld BL, Martin SF (2005) Enantioselective syntheses of tremulenediol A and tremulenolide A. Org Lett 7:4535–4537CrossRefPubMedPubMedCentralGoogle Scholar
  8. Atsumi S, Umezawa K, Iinuma H, Naganawa H, Nakamura H, Iitaka Y, Takeuchi T (1990) Production, isolation and structure determination of a novel β-glucosidase inhibitor, cyclophellitol, from Phellinus sp. J Antibiot 43:49–53CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bailey AM, Alberti F, Kilaru S, Collins CM, de Mattos-Shipley K, Hartley AJ, Hayes PM, Griffin A, Lazarus CM, Cox RJ, Willis CL, O’Dwyer K, Spence D, Foster GD (2016) Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Sci Rep 6:25202CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barbesgaard P, Heldt-Hansen HP, Diderichsen B (1992) On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol 36:569–572CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58:649–662CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bass D, Richards TA (2011) Three reasons to re-evaluate fungal diversity on Earth and in the ocean. Fungal Biol Rev 25:159–164CrossRefGoogle Scholar
  13. Beekman AM, Barrow RA (2014) Fungal metabolites as pharmaceuticals. Aust J Chem 67:827–843CrossRefGoogle Scholar
  14. Bell RPL, Wijnberg JBPA, de Groot A (2001) Base-induced rearrangement of Perhydronaphthalene-1,4 diol monosulfonate esters to 11-Oxatricyclo[5.3.1.02,6] undecanes. Total synthesis of Furanether B. J Org Chem 66:2350–2356CrossRefPubMedPubMedCentralGoogle Scholar
  15. Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98(3):426–438CrossRefGoogle Scholar
  16. Bladt TT, Frisvad JC, Knudsen PB, Larsen TO (2013) Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules 18(9):11338–11376CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boh B, Berovic M, Zhang J, Zhi-Bin L (2007) Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 13:265–301CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bräse S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109(9):3903–3990CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cane DE, Kang I (2000) Aristolochene synthase: purification, molecular cloning, high-level expression in Escherichia coli, and characterization of the Aspergillus terreus cyclase. Arch Biochem Biophys 376(2):354–364CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cheung PCK (2010) The nutritional and health benefits of mushrooms-review. Nutr Bull 35:292–299CrossRefGoogle Scholar
  22. Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106(8):3412–3442CrossRefPubMedPubMedCentralGoogle Scholar
  23. Christianson DW (2008) Unearthing the roots of the terpenome. Curr Opin Chem Biol 12(2):141–150CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362(5):402–415CrossRefPubMedPubMedCentralGoogle Scholar
  25. Correia JJ (1991) Effects of antimitotic agents on tubulin – nucleotide interactions. Pharmacol Ther 52:127–147CrossRefPubMedPubMedCentralGoogle Scholar
  26. Davis EM, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In: Biosynthesis: aromatic polyketides, isoprenoids, alkaloids. Springer, Berlin, pp 53–95CrossRefGoogle Scholar
  27. de Boer AH, de Vries-van Leeuwen IJ (2012) Fusicoccanes: diterpenes with surprising biological functions. Trends Plant Sci 17(6):360–368Google Scholar
  28. Dufossé L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26C:56–61CrossRefGoogle Scholar
  29. Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land? Evolution 66(9):2961–2968CrossRefGoogle Scholar
  30. Elisashvili V (2012) Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). Int J Med Mushrooms 14(3):211–239CrossRefGoogle Scholar
  31. Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31(5):617–627CrossRefGoogle Scholar
  32. Fujii R, Minami A, Tsukagoshi T, Sato N, Sahara T, Ohgiya S, Gomi K, Oikawa H (2011) Total biosynthesis of diterpene aphidicolin, a specific inhibitor of DNA polymerase α: heterologous expression of four biosynthetic genes in Aspergillus oryzae. Biosci Biotechnol Biochem 75:1813–1817CrossRefGoogle Scholar
  33. Gauthier GM, Keller NP (2013) Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol 61:146–157CrossRefGoogle Scholar
  34. Godio RP, Martin JF (2009) Modified oxidosqualene cyclases in the formation of bioactive secondary metabolites: biosynthesis of the antitumor clavaric acid. Fungal Genet Biol 46(3):232–242CrossRefGoogle Scholar
  35. Godio RP, Fouces R, Martin JF (2007) A squalene epoxidase is involved in biosynthesis of both the antitumor compound clavaric acid and sterols in the basidiomycete Hypholoma sublateritium. Chem Biol 14(12):1334–1346CrossRefGoogle Scholar
  36. Hamad B (2010) The antibiotics market. Nat Rev Drug Discov 9:675–676CrossRefGoogle Scholar
  37. Hansen FG, Bundgaard E, Madsen R (2005) A short synthesis of (+)-Cyclophellitol. J Org Chem 70:10139–10142CrossRefGoogle Scholar
  38. Hartley AJ, de Mattos-Shipley K, Collins CM, Kilaru S, Foster GD, Bailey AM (2009) Investigating pleuromutilin-producing Clitopilus species and related basidiomycetes. FEMS Microbiol Lett 297:24–30CrossRefGoogle Scholar
  39. Hashimoto T, Tori M, Mizuno Y, Asakawa Y (1987) Cryptoporic acid A and B, novel bitter drimane sesquiterpinoid ethers of isocitric acid, from the fungus Cryptoporus volvatus. Tetrahedron Lett 28:6303CrossRefGoogle Scholar
  40. Heneghan MN, Yakasai AA, Halo LM, Song Z, Bailey AM, Simpson TJ, Cox RJ, Lazarus CM (2010) First heterologous reconstruction of a complete functional fungal biosynthetic multigene cluster. Chembiochem 11:1508–1512CrossRefGoogle Scholar
  41. Henningsen M (2003) Modern fungicides: fighting fungi in agriculture. Chemie in unserer Zeit 37(2):98–111CrossRefGoogle Scholar
  42. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE et al (2007) Higher level phylogenetic classification of the fungi. Mycol Res 111(Pt 5):509–547CrossRefGoogle Scholar
  43. Hidalgo PI, Ullan RV, Albillos SM, Montero O, Fernández-Bodega MÁ et al (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Genet Biol 62:11–24CrossRefGoogle Scholar
  44. Hirano A, Iwai Y, Masuma R, Tei K, Omura S (1979) Neoxaline, a new alkaloid produced by Aspergillus japonicus, production, isolation and properties. J Antibiot 32:781–785CrossRefGoogle Scholar
  45. Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416CrossRefGoogle Scholar
  46. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164CrossRefGoogle Scholar
  47. Iwasaki S (1993) Antimitotic agents: chemistry and recognition of tubulin molecule. Med Res Rev 13:183–198CrossRefGoogle Scholar
  48. Jiang JD, Zhiqiang AN (2000) Bioactive fungal natural products through classic a biocombinatorial approches. In: Atta-ur-Rahman (ed) Studies in natural products chemistry. Elsevier Science Publishers, Amsterdam, pp 245–272Google Scholar
  49. Jin FJ, Maruyama J, Juvvadi PR, Arioka M, Kitamoto K (2004) Adenine auxotrophic mutants of Aspergillus oryzae: development of a novel transformation system with triple auxotrophic hosts. Biosci Biotechnol Biochem 68:656–662CrossRefGoogle Scholar
  50. Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, Ishiguro Y, Furukawa S (1994) Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett 35:1569–1572CrossRefGoogle Scholar
  51. Kawagishi H, Akachi T, Ogawa T, Masuda K, Yamaguchi K, Yazawa K, Takahashi M (2006) Chaxine A, an osteoclast-forming suppressing substance, from the mushroom Agrocybe chaxingu. Heterocycles 69(1):253–258CrossRefGoogle Scholar
  52. Kawai K, Nozawa K, Nakajima S, Iitaka Y (1984) Studies on fungal products. VII. The structure of meleagrin and 9-O-p-bromobenzoylmeleagrin. Chem Pharm Bull 32:94–98CrossRefGoogle Scholar
  53. Kealey JT, Liu L, Santi DV, Betlach MC, Barr PJ (1998) Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci U S A 95:505–509CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kimura M, Kushiro T, Shibuya M, Ebizuka Y, Abe I (2010) Protostadienol synthase from Aspergillus fumigatus: functional conversion into lanosterol synthase. Biochem Biophys Res Commun 391(1):899–902CrossRefGoogle Scholar
  55. Kogl M, Brecker L, Warrass R, Mulzer J (2008) Novel protoilludane lead structure for veterinary antibiotics: Total synthesis of Pasteurestins A and B and assignment of their configurations. Eur J Org Chem 16:2714–2730CrossRefGoogle Scholar
  56. Konda Y, Onda M, Hirano A, Omura S (1980) Oxaline and neoxaline. Chem Pharm Bull 28:2987–2993CrossRefGoogle Scholar
  57. Kondoh M, Usui T, Mayumi T, Osada H (1998) Effects of tryprostatin derivatives on microtubule assembly in vitro and in situ. J Antibiot 51:801–804.39CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kour D, Rana KL, Thakur S, Sharma S, Yadav N, Rastegari AA, Yadav AN, Saxena AK (2019) Disruption of protease genes in microbes for production of heterologous proteins. In: Singh HB, Gupta VK, Jogaiah S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 35–75.  https://doi.org/10.1016/B978-0-444-63503-7.00003-6CrossRefGoogle Scholar
  59. Kozlovsky AZ, Vinokrova NG, Reshetilova TA, Sakharovsky VG, Baskunov BP, Seleznyov SG (1994) New metabolites of Penicillium glandicola var. glandicola: glandicolin A and glandicolin B. Prikl Biokhim Mikrobiol 30:410–414Google Scholar
  60. Lesburg CA, Caruthers JM, Paschall CM, Christianson DW (1998) Managing and manipulating carbocations in biology: terpenoid cyclase structure and mechanism. Curr Opin Struct Biol 8(6):695–703CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lindequist U, Niedermeyer THJ, Julich WD (2005) The pharmacological potential of mushrooms. eCAM 2(3):285–299PubMedPubMedCentralGoogle Scholar
  62. Lodeiro S, Xiong Q, Wilson WK, Ivanova Y, Smith ML, May GS, Matsuda SP (2009) Protostadienol biosynthesis and metabolism in the pathogenic fungus Aspergillus fumigatus. Org Lett 11(6):1241–1244CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ma LJ, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416CrossRefGoogle Scholar
  64. Magnusson G, Thoren S, Wickberg B (1972) Fungal extractives-IV: structure of a novel sesquiterpene dialdehyde from Lactarius by spectroscopic methods. Tetrahedron Lett 29(11):1621–1624CrossRefGoogle Scholar
  65. Mantle PG, Perera KP, Maishman NJ, Mundy GR (1983) Biosynthesis of penitrems and roquefortine by Penicillium crustosum. Appl Environ Microbiol 45:1486–1490PubMedPubMedCentralGoogle Scholar
  66. Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58:555–564CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mei D, Shi-Ping C, Kazuko K, Yochinobu I, Wen-Zhi G, Salu SS, Takaki H, Masaki T, Naomi M, Atsushi K, Keiji M, Mitsuru H, Nobuo S (2009) Anti- proliferative and apoptosis-inducible activity of Sarcodonin G from Sarcodon scabrosus in HeLa cells. Int J Oncol 34:201–207Google Scholar
  68. Mihelcic J, Moeller KD (2004) Oxidative Cyclizations: the asymmetric synthesis of (−)-Alliacol A. J Am Chem Soc 126:9106–9111CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mitsuguchi H, Seshime Y, Fujii I, Shibuya M, Ebizuka Y, Kushiro T (2009) Biosynthesis of steroidal antibiotic fusidanes: functional analysis of oxidosqualene cyclase and subsequent tailoring enzymes from Aspergillus fumigatus. J Am Chem Soc 131(18):6402–6411CrossRefPubMedPubMedCentralGoogle Scholar
  70. Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L, Jacquot JP, Gelhaye E (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6(3):248–263CrossRefPubMedPubMedCentralGoogle Scholar
  71. Nagel DW, Pachler KGR, Steyn PS, Wessels PL, Gafner G, Kruger GJ (1974) X-ray structure of oxaline: a novel alkaloid from Penicillium oxalicum. J Chem Soc Chem Commun 24:1021–1022CrossRefGoogle Scholar
  72. Nagel DW, Pachler KGR, Steyn PS, Vleggaar R, Wessels PL (1976) The chemistry and 13CNMR assignments of oxaline, a novel alkaloid from Penicillium oxalicum. Tetrahedron 32:2625–2631CrossRefGoogle Scholar
  73. Nozawa K, Nakajima S (1979) Isolation of radicicol from Penicillium luteo-aurantium, and meleagrin, a new metabolite, from Penicillium meleagrinum. J Nat Prod 42:374–377CrossRefGoogle Scholar
  74. Pahirulzaman KAK, Williams K, Lazarus CM (2012) A toolkit for heterologous expression of metabolic pathways in Aspergillus oryzae. Methods Enzymol 517:241–260CrossRefPubMedPubMedCentralGoogle Scholar
  75. Paquette LA, Geng F (2002) Total synthesis of (+)-isabelin. J Am Chem Soc 124:9199–9203CrossRefPubMedPubMedCentralGoogle Scholar
  76. Peters RJ (2010) Two rings in them all: the labdane related diterpenoids. Nat Prod Rep 27(11):1521–1530CrossRefPubMedPubMedCentralGoogle Scholar
  77. Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27(1):14–22CrossRefPubMedPubMedCentralGoogle Scholar
  78. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20(5):200–206CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2018a) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research. Springer, Cham.  https://doi.org/10.1007/978-3-030-03589-1_6CrossRefGoogle Scholar
  80. Rana KL, Kour D, Yadav AN (2018b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30Google Scholar
  81. Rios JL, Andújar I, Recio MC, Giner RM (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75(11):2016–2044CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sakai K, Kinoshita H, Shimizu T, Nihira T (2008) Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J Biosci Bioeng 106:466–472CrossRefPubMedPubMedCentralGoogle Scholar
  83. Santos dos RG, Osório LF, Crippa SAJ, Riba J, Zuardi WA, Jaime ECH (2016) Antidepressive, anxiolytic, and antiaddictive effects of ayahuasca, psilocybin and lysergic acid diethylamide (LSD): a systematic review of clinical trials published in the last 25 years. Ther Adv Psychopharmacol 6(3):193–213CrossRefGoogle Scholar
  84. Scott PM, Merrien MA, Polonsky J (1976) Roquefortine and isofumigaclavine a, metabolites from Penicillium roqueforti. Experientia 32:140–142CrossRefGoogle Scholar
  85. Singh AK, Bishayee A, Pandey AK (2018) Targeting histone deacetylases with compound of natural and synthetic origin: an emerging anticancer strategies. Nutrients 10(6):731CrossRefGoogle Scholar
  86. Smanski MJ, Peterson RM, Huang SX, Shen B (2012) Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis. Curr Opin Chem Biol 16(1–2):132–141CrossRefPubMedPubMedCentralGoogle Scholar
  87. Smith D, Burnham M, Edwards J, Earl A, Turner G (1990) Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillium chrysogenum. Nat Biotechnol 8:39–41CrossRefGoogle Scholar
  88. Srikrishna A, Vasantha LB, Ravikumar PC (2006) The first total synthesis of (±)-lagopodin A. Tetrahedron Lett 47(8):1277–1281CrossRefGoogle Scholar
  89. Stajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, Borodovsky M, Burns C, Canbäck B, Casselton LA, Cheng CK, Deng J, Dietrich FS, Fargo DC et al (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107(26):11889–11894CrossRefPubMedPubMedCentralGoogle Scholar
  90. Steyn PS (1970) The isolation, structure and absolute configuration of secalonic acid D, the toxic metabolite of Penicillium oxalicum. Tetrahedron 26:51–57CrossRefPubMedPubMedCentralGoogle Scholar
  91. Steyn PS, Vleggaar R (2004) Roquefortine, an intermediate in the biosynthesis of oxaline in cultures of Penicillium oxalicum. J Chem Soc Chem Commun 10:560–561Google Scholar
  92. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, New Delhi, pp 117–143.  https://doi.org/10.1007/978-81-322-2647-5_7CrossRefGoogle Scholar
  93. Tagami K, Liu C, Minami A, Noike M, Isaka T, Fueki S, Shichijo Y, Toshima H, Gomi K, Dairi T, Oikawa H (2013) Reconstitution of biosynthetic machinery for indole-diterpene paxilline in Aspergillus oryzae. J Am Chem Soc 135:1260–1263CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tfelt-Hansen P, Saxena PR, Dahlof C, Pascual J, Lainez M, Henry P, Diener H, Schoenen J, Ferrari MD, Goadsby PJ (2000) Ergotamine in the acute treatment of migraine: a review and European consensus. Brain 123:9–18CrossRefPubMedPubMedCentralGoogle Scholar
  95. Tori M, Hamada N, Sono M, Sono Y, Ishikawa M, Nakashima K, Hashimoto T, Asakawa Y (2000) Synthesis of cryptoporic acid A methyl ester. Tetrahedron Lett 41:3099–3102CrossRefGoogle Scholar
  96. Usui T, Kondoh M, Cui CB, Mayumi T, Osada H (1998) Tryprostatin A, a specific and novel inhibitor of microtubule assembly. Biochem J 333:543–548CrossRefPubMedPubMedCentralGoogle Scholar
  97. Van Den Berg M, Gidijala L, Kiela J, Bovenberg R, Vander KI (2010) Biosynthesis of active pharmaceuticals: beta-lactam biosynthesis in filamentous fungi. Biotechnol Genet Eng Rev 27:1–32CrossRefGoogle Scholar
  98. Vedula LS, Jiang J, Zakharian T, Cane DE, Christianson DW (2008) Structural and mechanistic analysis of trichodiene synthase using sitedirected mutagenesis: probing the catalytic function of tyrosine-295 and the asparagine-225/ serine-229/glutamate-233-Mg2+ B motif. Arch Biochem Biophys 469(2):184–194CrossRefPubMedPubMedCentralGoogle Scholar
  99. Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89(5):1323–1332CrossRefPubMedPubMedCentralGoogle Scholar
  100. Weber G, Schörgendorfer K, Schneider-Scherzer E, Leitner E (1994) The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr Genet 26:120–125CrossRefPubMedPubMedCentralGoogle Scholar
  101. Xu JW, Zhao W, Zhong JJ (2010) Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol 87(2):457–466CrossRefPubMedPubMedCentralGoogle Scholar
  102. Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05Google Scholar
  103. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13CrossRefGoogle Scholar
  104. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18.  https://doi.org/10.1016/B978-0-444-63501-3.00001-6CrossRefGoogle Scholar
  105. Yalpani N, Altier DJ, Barbour E, Cigan AL, Scelonge CJ (2001) Production of 6-methylsalicylic acid by expression of a fungal polyketide synthase activates disease resistance in tobacco. Plant Cell 13:1401–1409CrossRefPubMedPubMedCentralGoogle Scholar
  106. Yamada O, Rho LB, Katsuya G (1997) Transformation system for Aspergillus oryzae with double auxotrophic mutations niaD and sC. Biosci Biotechnol Biochem 61:1367–1369CrossRefGoogle Scholar
  107. Zhao M, Goedecke T, Gunn J, Duan J, Che CT (2013) Protostane and fusidane triterpenes: a mini-review. Molecules 18(4):4054–4080CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zhong JJ, Xiao JH (2009) Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotechnol 113:79–150PubMedPubMedCentralGoogle Scholar
  109. Zjawiony JK (2004) Biologically active compounds from Aphyllophorales (polypore) fungi. J Nat Prod 67(2):300–310CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amit Kumar Singh
    • 1
  • Harvesh Kumar Rana
    • 1
  • Abhay K. Pandey
    • 1
  1. 1.Department of BiochemistryUniversity of AllahabadAllahabadIndia

Personalised recommendations