Advertisement

Recent Advancement and the Way Forward for Cordyceps

  • Rahul Chaubey
  • Jitendra Singh
  • Mohammed Muzeruddin Baig
  • Amit Kumar
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Cordyceps are entomopathogenic fungi, which include about 400 species, have cosmopolitan distribution, and are dominant and abundantly found in humid temperate and tropical forests. Cordyceps attacks mainly the insect larvae, with few reports on pupa and adults; the fungus invades and gradually replaces the host tissue by its mycelium. Cordyceps host range is very wide but predominant on two orders Coleoptera and Lepidoptera. Cordyceps species have diverse pharmaceutical properties and are commonly used to promote longevity and relieve fatigue along with immunomodulating, anti-oxidant, anti-tumor, anti-cancer, anti-metastatic, anti-inflammatory, anti-oxidative, antibiotic, hepatoprotective, nephroprotective, hypoglycemic, and hypocholesterolemic effects in humans. Cordyceps might also improve immunity by stimulating cells and specific chemicals in the immune system. The important active ingredients deciphered are polysaccharides, sterols, cordycepin, cordycepic acid, nucleosides, etc. More than 20 pharmacologically bioactive compounds have been isolated and extracted in various solvents and used for various treatments. The natural availability is very limited but the artificial culture is relatively high. However, the availability of the seeding material and their development protocol is restricted to few labs/companies. All the identified species are not fully exploited for the commercial cultivation due to lack of easy availability of seeding material and sophisticated environment requirement. The more vigorous screening of all the available germplasm is still the need of hour for more promising and new pharmacological active ingredients. In India, the sericulture waste can be used as an important potential culture material for developing the Cordyceps-related industry and support the silk farmers for additional income and social upliftment of the tribal community in future.

Keywords

Cordyceps Cordyceps sinensis Host affinity Medicinal properties Artificial culturing Commercial cultivation Bioprospecting 

Notes

Acknowledgments

The authors are very thankful to the Kala Azar Medical Research Center, Rambag Road, Muzaffarpur, Bihar; Central Tasar Research and Training Institute, Nagri, Ranchi, Jharkhand and Central Muga Eri Research and Training Institute, Lahdoigarh, Jorhat, Assam for providing necessary support for this publication.

References

  1. Adhikari MK (1981) Chyau: Ayurvediya vishleshan ek vivechana (mushrooms: an ayurvedic concepts). J Nep Pharm Asso 9:17–21Google Scholar
  2. Ahn YJ, Park SJ, Lee SG, Shin SC, Choi DH (2000) Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. J Agric Food Chem 48:2744–2748CrossRefPubMedGoogle Scholar
  3. Artjariyasripong S, Mitchell JI, Hywel-Jones NL, Jones EBG (2001) Relationship of the genus Cordyceps and related genera, based on parsimony and spectral analysis of partial 18S and 28S ribosomal gene sequences. Mycoscience 42(6):503–517CrossRefGoogle Scholar
  4. Au D, Wang L, Yang D, Mok DK, Chan AS, Xu H (2012) Application of microscopy in authentication of valuable Chinese medicine I—Cordyceps sinensis, its counterfeits, and related products. Microsc Res Tech 75:54–64CrossRefPubMedGoogle Scholar
  5. Baral B, Maharjan J (2012) In-vitro culture of Ophiocordyceps sinensis (Yarsagumba) and their associated endophytic fungi of Nepal Himalaya. Sci World 10(10):38–42CrossRefGoogle Scholar
  6. Bary A (1867) Zur Kenntniss insectentoedtender pilze. Botanische Zeitung 25:2–28Google Scholar
  7. Basith M, Madelin MF (1968) Studies on the production of perithecial stromata by Cordyceps militaris in artificial culture. Can J Bot 46:473–480CrossRefGoogle Scholar
  8. Berkeley MJ (1855) Nat. Ord. CII. Fungi. In: Hooker JD (ed) The botany of the Antarctic Voyage. II. Florae NNovae-Zealandiae. Lovell Reeve, London, pp 172–210Google Scholar
  9. Berkeley MJ (1857) On some entomogenous Sphaeriae. J Proc Linnean Soc Botany 1(4):157–159CrossRefGoogle Scholar
  10. Bocak L, Barton C, Crampton-Platt A, Chesters D, Ahrens D, Vogler AP (2014) Building the Coleoptera tree of life for >8000 species: composition of public DNA data and fit with Linnaean classification. Syst Entomol 39(1):97–110CrossRefGoogle Scholar
  11. Bok JW, Lermer L, Chilton J, Klingeman HG, Towers GH (1999) Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51:891–898CrossRefPubMedGoogle Scholar
  12. Burges HD (1981) Strategy for the microbial control of pests in 1980 and beyond: in Microbial control of pests and plant diseases, H. D. Burges, Academic Press London 797–836Google Scholar
  13. Ban S, Sakane T, Nakagiri A (2015) Three new species of Ophiocordyceps and overview of anamorph types in the genus and the familyOphiocordyceptaceae, Mycological Progress 14(1):article 1017Google Scholar
  14. Chai JP, Xie DY, Tian XJ et al (2010) Study on defense reactions of silkworm, Bombyx mori to Cordyceps militaris. Southwest China J Agric Sci 23:1308–1313Google Scholar
  15. Chen QW (1997) Study on Cordyceps (Fr.) fungi in Shennongjia forest district. Hubei Agric Sci 6:49–52Google Scholar
  16. Chen RY, Ichida M (2002) Infection of the silkworm, Bombyx mori, with Cordyceps militaris. J Insect Biotechnol Sericol 71:61–63Google Scholar
  17. Chen SZ, Wu PJ (1990) A brief introduction to bottle culture technique of Cordyceps militaris. Edible Fungi 04:31Google Scholar
  18. Chen YJ, Shiao MS, Lee SS, Wang SY (1997) Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937cells. Life Sci 60:2349–2359Google Scholar
  19. Chen YQ, Piao RZ, Jin YS et al (2002) Study on the artificial good quality and high output cultivation technique of Cordyceps militaris. Edible Fungi China 21(5):20–22Google Scholar
  20. Chen J, Zhang W, Lu T, Li J, ZhengY KL (2006) Morphological and genetic characterization of a cultivated Cordyceps sinensis fungus and its polysaccharide component possessing antioxidant property in H22 tumor-bearing mice. Life Sci 78:2742–2748CrossRefPubMedGoogle Scholar
  21. Chen SD, Lin SY, Lai YS, Cheng YH (2008) Effect of Cordyceps sinensis adlay fermentative products on antioxidant activities and macrophage functions. Taiwan J Agric Chem Food Sci 46:223–233Google Scholar
  22. Chen W, Zhang W, Shen W, Wang K (2010a) Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophages in vitro. Cell Immunol 262:69–74CrossRefPubMedGoogle Scholar
  23. Chen Y, Chen YC, Lin YT, Huang SH, Wang SM (2010b) Cordycepin induces apoptosis of CGTH W-2 thyroid carcinoma cells through the calcium-calpain-caspase 7-PARP pathway. J Agric Food Chem 58:11645–11652CrossRefPubMedGoogle Scholar
  24. Chen JY, Cao YQ, Yang DR, Li MH (2011a) A new species of Ophiocordyceps (Clavicipitales, Ascomycota) from southwestern China. Mycotaxon 115:1–4CrossRefGoogle Scholar
  25. Chen YS, Liu BL, Chang YN (2011b) Effects of light and heavy metals on Cordyceps militaris fruit body growth in rice grain-based cultivation. Korean J Chem Eng 28:875–879CrossRefGoogle Scholar
  26. Chen ZH, Dai YD, Yu H et al (2013) Systematic analyses of Ophiocordyceps lanpingensis sp. nov., a new species of Ophiocordyceps in China. Microbiol Res 168(8):525–532CrossRefPubMedGoogle Scholar
  27. Cheung JK, Cheung AW, ZhuY ZKY, Bi CW et al (2009) Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: signaling cascade and induction of cytokines. J Ethnopharmacol 124:61–68CrossRefPubMedGoogle Scholar
  28. Chiang HM, Hou YC, Tsai SY, Yang SY, PDL C, Hsiu SL, Wen KC (2005) Marked decrease of cyclosporin absorption caused by coadministration of Cordyceps sinensis in rats. J Food Drug Anal 13:239–243Google Scholar
  29. Choi IY, Choi JS, Lee WH et al (1999) The condition of production of artificial fruiting body of Cordyceps militaris. Korean J Mycol 27:243–248Google Scholar
  30. Cooke MC (1892) Vegetable wasps and plant worms. Society for Promoting Christian Knowledge, LondonGoogle Scholar
  31. Chiu Ching-Peng, Tsong-Long Hwang, You Chan, Mohamed El-Shazly, Tung-Ying Wu, I-Wen Lo, Yu-Ming Hsu, Kuei-Hung Lai, Ming-Feng Hou, Shyng-Shiou Yuan, Fang-Rong Chang, Yang-Chang Wu, (2016) Research and development of Cordyceps in Taiwan. Food Science and Human Wellness 5 (4):177-185Google Scholar
  32. Cheng Y W, Chen Y I, Tzeng CY, Chen HC, Tsai CC, Lee Y C, Lin JG, Lai YK, Chang SL (2012) Extracts of Cordyceps militaris lower blood glucose via the stimulation of cholinergic activation and insulin secretion in normal rats. Phytother. Res. 26, 1173-1177Google Scholar
  33. Das SK, Masuda M, Sakurai A (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81:961–968CrossRefPubMedGoogle Scholar
  34. De Bary (1867) Zur Kenntniss insect entoedtenderpilze. Botanis- che Zeitung 25(2):28Google Scholar
  35. Deng-Bo Ji, Jia Ye, Chang-Ling Li, Yu-Hua Wang, Jiong Zhao, Shao-Qing Cai, (2009) Antiaging effect of extract. Phytotherapy Research 23 (1):116-122Google Scholar
  36. Dilani D. De Silva, Sylvie Rapior, Kevin D. Hyde, Ali H. Bahkali, (2012) Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Diversity 56 (1):1-29Google Scholar
  37. Ellis JB, Everhart BM (1892) The North American Pyrenomycetes. Ellis and Everhart, New fieldGoogle Scholar
  38. Evans HC (1982) Entomogenous fungi in tropical forest ecosystems: an appraisal. Ecol Entomol 7(1):47–60CrossRefGoogle Scholar
  39. Evans HC, Elliot SI, Hughes DP (2011) Ophiocordyceps unilateralis. A keystone species for unraveling ecosystem functioning and biodiversity of fungi in tropical forests? Commun Integr Biol 4:598–602CrossRefPubMedPubMedCentralGoogle Scholar
  40. Eriksson O (1982) Cordyceps bifusispora spec. nov. Mycotaxon 15:185–188Google Scholar
  41. Feng HL, Guo WC, Zhang RC (1990) Histological studies on Cordyceps militaris (L.: Fr.) link. Acta Mycol Sin 9:1–5Google Scholar
  42. Gao SY, Wang FZ (2008) Research of commercialized cultivation technology on Cordyceps militaris. North Hortic 9:212–215Google Scholar
  43. Glare TR (1992) Hirsutella stylophora Mains, a pathogen of Costelytra zealandica (Coleoptera: Scarabaeidae) in New Zealand. N Z Entomol 15(1):29–32CrossRefGoogle Scholar
  44. Glare TR, Callaghan MO, Wigley PJ (1993) Check list of naturally occurring entomopathogenic microbes and nematodes in New Zealand. N Z J Zoo 20(2):95–120CrossRefGoogle Scholar
  45. Gong CL, Wu YL, Zhu JH et al (1993) Artificial culture and composition analysis of silkworm Cordyceps militaris. Edible Fungi China 12(4):21–23Google Scholar
  46. Granato D, Branco GF, Nazzaro F, Cruz AG, Faria JAF (2010) Functional foods and nondairy probiotic food development: trends, concepts and products. Compr Rev Food Sci Food Saf 9:292–302CrossRefGoogle Scholar
  47. Gray GR (1858) Notices of insects that are known to form the bases of fungoid parasites. Harvard University, LondonGoogle Scholar
  48. Gu HS, Liang MY (1987) Study on the manual cultivation of Cordyceps militaris. Pharm Inf Bull 5:51–52Google Scholar
  49. Gu HS, Liang MY, Yuan GH et al (1988) Preliminary study on artificial cultivation of Cordyceps militaris using the pupae of Bombyx mori and Antheraea pernyi. Sci Seric 14:108–110Google Scholar
  50. Guo P, Kai Q, Gao J, Lian Z, Wu C, Wu C, Zhu H (2010) Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J Pharmacol Sci 113(4):395–403CrossRefPubMedGoogle Scholar
  51. Garbyal S S, Aggarwal K K and Babu C R (2004) Impact of Cordyceps sinensis in the rural economy of interior villages of Dharchula sub-division of Kumaon Himalayas and its implications in the society. Indian Journal of Traditional Knowledge 3(2):182-186Google Scholar
  52. Harada Y, Akiyama N, Yamamoto K et al (1995) Production of Cordyceps militaris fruit body on artificially inoculated pupae of Mamestra brassicae in the laboratory. Trans Mycol Soc Jpn 36:67–72Google Scholar
  53. Hardeep S, Sardul T, Sandhu S, Sharma AK (2014) Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. Biotech 4:1–12Google Scholar
  54. Hitchcock SW (1961) Pupal mortality of the orange-striped oakworm. J Eco Entomol 54(5):962–964CrossRefGoogle Scholar
  55. Hobbs C (1995) Medicinal mushrooms: an exploration of tradition, healing and culture, vol 251. Botanica Press, Santa CruzGoogle Scholar
  56. Hodge KT, Krasnoff SB, Humber RA (1996) Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 88:715–719CrossRefGoogle Scholar
  57. Hodge KT, Humber RA, Wozniak CA (1998) Cordyceps variabilis and the genus Syngliocladium. Mycologia 90:743–753CrossRefGoogle Scholar
  58. Holder DJ, Keyhani NO (2005) Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71:5260–5266CrossRefPubMedPubMedCentralGoogle Scholar
  59. Holliday J, Cleaver M (2008) Medicinal value of the caterpillar fungi species of the genus cordyceps (Fr) link (Ascomycetes) a review. Int J Med Mushrooms 10(3):219–234CrossRefGoogle Scholar
  60. Holliday J, Cleaver P, Loomis-Powers M, Patel D (2004) Analysis of quality and techniques for hybridization of medicinal fungus Cordyceps sinensis. Int J Med Mushr 6:147–160CrossRefGoogle Scholar
  61. Holliday J, Cleaver M, Wasser SP (2005) Cordyceps. In: Coates PM, Blackman MR, Cragg G, Levine M, Moss J, White J (eds) Encyclopedia of dietary supplements. Marcel Dekker, New York, pp 1–13Google Scholar
  62. Hong IP, Kang PD, Kim KY et al (2010) Fruit body formation on silkworm by Cordyceps militaris. Mycobiology 38:128–132CrossRefPubMedPubMedCentralGoogle Scholar
  63. Huang ZJ, Ji H, Li P, Xie L, Zhao XC (2002) Hypoglycemic effect and mechanism of polysaccharides from cultured mycelium of Cordyceps sinensis. J China Pharm Univ 33:51–54Google Scholar
  64. Huang LF, Liang YZ, Guo FQ, Zhou ZF, Cheng BM (2003) Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militaris by LC/ESIMS. J Pharm Biomed Anal 33:1155–1162CrossRefPubMedGoogle Scholar
  65. Humber RA (2000) Fungal pathogens and parasites of insects. In: Priest F, Goodfellow M (eds) Applied microbial systematics. Kluwer Academic Publishers, Dordrecht, pp 203–230CrossRefGoogle Scholar
  66. Hennings PC (1902) Einige neue Cordiceps-arten aus Surinam, Hedwigia 41:167–169Google Scholar
  67. Hywel-Jones N L (1995) Cordyceps brunneapunctata sp. nov. infecting beetle larvae inThailand, Mycological Research 99(10):1195–1198Google Scholar
  68. Isaka M, Jaturapat A, Ruksereee K, Danwisetkanjana K, Tanticharoen M, Thebtar AY (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018CrossRefPubMedGoogle Scholar
  69. Jia JM, Tao HH, Feng BM (2009) Cordyceamides A and B from the culture liquid of Cordyceps sinensis (Berk.) Sacc. Chem Pharm Bull (Tokyo) 57:99–101CrossRefGoogle Scholar
  70. Jiang P (1987) Pharmacology constituent and function of Cordyceps sinensis. J West North Med 2:43–44Google Scholar
  71. Jiang BL, Xun YG (1996) Studies on culture of Cordyceps militaris on Philosamia cynthia. Nat Plant Resour China 24(2):12–13Google Scholar
  72. Jin LY, Du ST, Ma L et al (2009) Optimization on mathematical model of basic medium of Cordyceps militaris cultivation. J Northwest A F Univ (Nat Sci Ed) 37(11):175–179Google Scholar
  73. Jong-Ho Koh, Jin-Man Kim, Un-Jae Chang, Hyung-Joo Suh, Hypocholesterolemic Effect of Hot-Water Extract from Mycelia of Cordyceps sinensis. Biological & Pharmaceutical Bulletin 26 (1):84-87Google Scholar
  74. Jian Yong Wu, Qiao Xia Zhang, Po Hong Leung, (2007) Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine 14 (1):43-49Google Scholar
  75. Kaczka EA, Trenner NR, Arison B, Walker RW, Folkers K (1964) Identification of cordycepin, a metabolite of Cordyceps militaris, as 3-deoxyadenosine. Biochem Biophys Res Commun 14:456–457CrossRefPubMedGoogle Scholar
  76. Kan WC, Wang HY, Chien CC, Li SL, Chen YC , Chang LH, Cheng CH, Tsai WC, Hwang JC, Su SB, Huang LH, Chuu JJ (2012) Effects of extract from solid-state fermented Cordyceps sinensis on type 2 diabetes mellitus. Evid Based Complement Altern Med 2012:743107.  https://doi.org/10.1155/2012/743107
  77. Kaszak BD (2014) Cordyceps fungi as natural killers, new hopes for medicine and biological control factors. Ann Parasitol 60(3):151–158Google Scholar
  78. Kautman V, Kautmanova I (2009) Cordyceps s.l (ascomycetes, clavicipitaceae) in Slovakia. Catathelasma 11:5–48Google Scholar
  79. Kautmanova I (2002) Cordyceps entomorrhiza and Cordyceps tuberculata (Ascomycetes, Clavicipitales) new for Slovakia. Acta Rerumnaturalium Musei Nationalis Slovaci Bratislava 48:40–43Google Scholar
  80. Kawamura S (1955) Icones of Japanese fungi, vol 8. Kazama Shobó, TokyoGoogle Scholar
  81. Keissler K, Lohwag H (1937) Part II fungi. In: Handel-Mazzetti H (ed) Symbolae sinicae. Springer, Wien, pp 1–73Google Scholar
  82. Kepler RM, Sung GH, Harada Y et al (2012) Host jumping onto close relatives and across kingdoms by Tyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea (Clavicipitaceae). Am J Bot 99(3):552–561CrossRefPubMedGoogle Scholar
  83. Kepler RM, Humber RA, Bischoff JF, Rehner SA (2014) Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 106(4):811–829CrossRefPubMedGoogle Scholar
  84. Kiho T, Hui J, Yamane A, Ukai S (1993) Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biol Pharm Bull 16:1291–1293CrossRefPubMedGoogle Scholar
  85. Kiho T, Yamane A, Hui J, Usui S, Ukai S (1996) Polysaccharides in fungi XXXVI.1 hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol Pharm Bull 19:294–296CrossRefPubMedGoogle Scholar
  86. Kim SD (2010) Isolation, structure and cholesterol esterase inhibitory activity of a polysaccharide, PS-A, from Cordyceps sinensis. J Appl Biol Chem 53:784–789Google Scholar
  87. Klingen SH, Salinas RM (2002) Checklist of naturally occurring pathogens of insects and mites in Norway. Norwegian J Entomol 49(1):23–28Google Scholar
  88. Kobayasi Y (1937) On the specific connection of Cordyceps entomorrhiza and Tilachlidiopsis nigra. Shokubutsugaku Zasshi 51(603):97–102CrossRefGoogle Scholar
  89. Kobayasi Y (1941) The genus Cordyceps and its allies. Sci Rep Tokyo Bunrika Daigaku B 5(84):53–260Google Scholar
  90. Kobayasi Y (1977) Miscellaneous notes on the genus Cordyceps and its allies (2). J Jpn Bot 52(3):65–71Google Scholar
  91. Kobayasi Y (1980) Miscellaneous notes on the genus Cordyceps and its allies. J Jpn Bot 55:181–188Google Scholar
  92. Kobayasi Y (1982) Keys to the taxa of the genera Cordyceps and Torrubiella. Trans Mycol Soc Jpn 23:329–364Google Scholar
  93. Kobayasi Y, Shimizu D (1960) Monographic studies of Cordyceps 1. Group parasitic on Elaphomyces. Bull Nat Sci Museum Tokyo 5:69–85Google Scholar
  94. Kobayasi Y, Shimizu D (1976a) Cordyceps species from Japan 2. Bull Nat Sci Museum Tokyo B Bot 6(3):77–96Google Scholar
  95. Kobayasi Y, Shimizu D (1976b) The genus Cordyceps and its allies from New Guinea. Bull Nat Sci Museum Tokyo Series B Bot 2(4):133–152Google Scholar
  96. Kobayasi Y, Shimizu D (1980) Cordyceps species from Japan. Bull Nat Sci Museum Tokyo Series B Bot 6(4):125–145Google Scholar
  97. Kobayasi Y, Shimizu D (1982) Cordyceps species from Japan 5. Bull Nat Sci Museum Tokyo Series B Bot 8(4):111–123Google Scholar
  98. Kobayasi Y, Shimizu D (1983) Cordyceps species from Japan 4. Bull Nat Sci Museum Tokyo B Bot 8(3):79–91Google Scholar
  99. Koval EZ (1974) Opredelitel entomofilnych Gribov CCCP. Science Academy of Ukraine Kiev, UkraineGoogle Scholar
  100. Kryukov VY, Yaroslavtseva ON, Lednev GR, Borisov BA (2011) Local epizootics caused by teleomorphic cordycipitoid fungi (Ascomycota: Hypocreales) in populations of forest lepidopterans and sawflies of the summer-autumn complex in Siberia. Microbiology 80(2):286–295CrossRefGoogle Scholar
  101. Kubo E, Sato A, Yoshikawa N, Kagota S, Shinozuka K, Nakamura K (2012) Effect of Cordyceps sinensis on TIMP-1secretion from mouse melanoma cell. Cent Eur J Biol 7:167–171Google Scholar
  102. Kuo YC, Tsai WJ, Wang JY, Chang SC, Lin CY, Shiao MS (2001) Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis. Life Sci 68:1067–1082Google Scholar
  103. Kuo CF, Chen CC, Luo YH, Huang RY, Chuang WJ, Sheu CC, Lin YS (2005) Cordyceps sinensis mycelium protects mice from group Astreptococcal infection. J Med Microbiol 54:795–802CrossRefPubMedGoogle Scholar
  104. Kuo CF, Chen CC, Lin CF, Jan MS, Huang RY, Luo YH, Chuang WJ, Sheu CC, Lin YS (2007a) Abrogation of streptococcal pyrogenic exotoxin B- mediated suppression of phagocytosis in U937cells by Cordyceps sinensis mycelium via production of cytokines. Food Chem Toxicol 45:278–285CrossRefPubMedGoogle Scholar
  105. Kuo MC, Chang CY, Cheng TL, Wu MJ (2007b) Immunomodulatory effect of exo-polysaccharides from submerged cultured Cordyceps sinensis: enhancement of cytokine synthesis, CD11b expression, and phagocytosis. Appl Microbiol Biotechnol 75:769–775CrossRefPubMedGoogle Scholar
  106. Karpińska E. 2012. Biostymulujące właściwości entomopatogenicznych grzybów z rodzaju Cordyceps. Borgis - Postępy Fitoterapii 4: 254-264.Google Scholar
  107. Kram A A and Kram K J (2012) Entomopathogenic Fungi as an Important Natural Regulator of Insect Outbreaks in Forests (Review) in Forest Ecosystems—More than Just Trees, J. A. Blanco and Y.-H. Lo, Eds., chapter 12, InTech, Rijeka, Croatia, pp. 265–294Google Scholar
  108. Kevin J. Gaston, (1991) The Magnitude of Global Insect Species Richness. Conservation Biology 5 (3):283-296Google Scholar
  109. Kai Yue, Meng Ye, Zuji Zhou, Wen Sun, Xiao Lin, (2013) The genus: a chemical and pharmacological review. Journal of Pharmacy and Pharmacology 65 (4):474-493Google Scholar
  110. K. G. CUNNINGHAM, WILLIAM MANSON, F. S. SPRING, S. A. HUTCHINSON, (1950) Cordycepin, a Metabolic Product isolated from Cultures of Cordyceps militaris (Linn.) Link.. Nature 166 (4231):949-949Google Scholar
  111. Kobayasi Y, Shimizu D (1978) Cordyceps species from Japan, Bulletin of the National Science Museum, Tokyo B, Botany 4(2):43–63Google Scholar
  112. Kryukov V Y, Yaroslavtseva O N, Lednev G R, Borisov B A (2011) Local epizootics caused by teleomorphic cordycipitoid fungi (Ascomycota: Hypocreales) in populations of forest lepidopterans and sawflies of the summer-autumn complex in Siberia, Microbiology 80(2):286–295Google Scholar
  113. Lauritzen EM (1971) Cordyceps gracilis Montagne and Durieu new to Scandinavia. Blyttia 29(2):85–87Google Scholar
  114. Lee JS, Kwon JS, Won DP, Lee KE, Shin WC, Hong EK (2010) Study on macrophage activation and structural characteristics of purified polysaccharide from the liquid culture broth of Cordyceps militaris. Carbohydr Polym 82:982–988CrossRefGoogle Scholar
  115. Leu SF, Poon SL, Pao HY, Huang BM (2011) The in vivo and in vitro stimulatory effects of cordycepin on mouse Leydig cell steroidogenesis. Biosci Biotechnol Biochem 75:723–731CrossRefPubMedGoogle Scholar
  116. Leung PH, Zhao S, Ho KP, Wu JY (2009) Chemical properties and antioxidant activity of exopolysaccharides from mycelia culture of Cordyceps sinensis fungus Cs-HK1. Food Chem 114:1251–1256CrossRefGoogle Scholar
  117. Li X (2002) Man made cultivates of Cordyceps militaris (L) link. J Microbiol (China) 22(6):56–57Google Scholar
  118. Li CB, Tong XD, Bai J et al (2004) Artificial stromata production of Cordyceps militaris. J Dalian Natl Univ 6(5):29–31Google Scholar
  119. Li SP, Zhang GH, Zeng Q, Huang ZG, Wang YT, Dong TT et al (2006a) Hypoglycemic activity of polysaccharide with antioxidation isolated from cultured Cordyceps mycelia. Phytomedicine 13:428–433CrossRefPubMedGoogle Scholar
  120. Li SP, Yang FQ, Tsim KW (2006b) Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal 41:1571–1584CrossRefPubMedGoogle Scholar
  121. Li SZ, Xia FN, Yang XB (2006c) Comparative studies on the cultivation of 5 selected strains of Cordyceps militaris. Edible Fungi China 25(6):15–16Google Scholar
  122. Li CR, Huang B, Nam SH et al (2006d) Identification of a strain RCEF0718 with antineoplastic activity. J Laiyang Agric Coll (Nat Sci) 23:263–267Google Scholar
  123. Li HP, Hu Z, Yuan JL, Fan HD, Chen W, Wang SJ et al (2007) A novel extracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis: purification and characterization. Phytother Res 21:1234–1241CrossRefPubMedGoogle Scholar
  124. Li CY, Chiang CS, Tsai ML, Hseu RS, Shu WY, Chuang CY, Sun YC, Chang YS, Lin JG, Chen CS, Huang CL, HsuI C (2009) Two-sided effect of Cordyceps sinensis on dendritic cells in different physiological stages. J Leukoc Biol 85:987–995CrossRefGoogle Scholar
  125. Li Y, Wang XL, Jiao L, Jiang Y, Li H, Jiang SP, Ngarong L, Fu SZ, Dong CH, Zhan Y, Yao YJ (2011) A survey of the geographic distribution of Ophiocordyceps sinensis. J Microbiol 49(6):913–919CrossRefPubMedGoogle Scholar
  126. Li CY, Chiang CS, Cheng WC, Wang SC, Cheng HT, Chen CR, Shu WY, Tsai ML, Hseu RS, Chang CW, Huang CY, Fang SH, Hsu IC (2012) Gene expression profiling of dendritic cells in different physiological stages under Cordyceps sinensis treatment. PLoS One 7:40824CrossRefGoogle Scholar
  127. Liang ZQ (1990) Anamorph of Cordyceps militaris and artificial culture of its fruit body. Southwest China J Agric Sci 3(2):1–6Google Scholar
  128. Liang MY, Gu HS (1987) Success in artificial cultivation of Cordyceps. J Shenyang Agric Univ 18:103–104Google Scholar
  129. Liang ZQ, Liu AY, Liu JL (1991) A new species of the genus Cordyceps and its Metarhizium anamorph. Acta Myco Sinica 10:257–262Google Scholar
  130. Liang ZQ, Liu AY, Jiang YC (2001) Two new species of Cordyceps from Jinggang Mountains. Mycosystema 20(3):306–309Google Scholar
  131. Lim JS, Kim SH, Choi JY, Park JS, Park SJ, Shin KS (2001) Cytokine-inducing and T cell mitogenic effects of Cordyceps hepialidicola. J Microbiol 39(3):181–185Google Scholar
  132. Lin QY, Song B, Li TH et al (2005) Studies on Cordyceps militaris (L.: Fr.) link infecting pupae of Tenebrio molitor L. Mycosystema 24:322–326Google Scholar
  133. Lin QY, Song B, Zhong YJ et al (2006) Optimization of some cultivation conditions of Cordyceps militaris. Edible Fungi China 25(6):17–19Google Scholar
  134. Lin CC, Pumsanguan W, Koo MMO, Huang HB, Lee MS (2007) Radiation protective effects of Cordyceps sinensis in blood cells. Tzu Chi Med J 19:226–232CrossRefGoogle Scholar
  135. Liu ZX (2004) Cultivation and the infectious ways to silkworm chrysalis with liquid spawn of Cordyceps militaris. J Huazhong Agric Univ 23:58–60Google Scholar
  136. Liu ZL, Liu Z (1997) Cordyceps spp. and some other entomopathogenic fungi from the Emei Mountain preserve in China. Mycosystema 16(2):139–143Google Scholar
  137. Liu B, Yuan P, Cao J (1984) A new species of Cordyceps from China. Acta Myco Sinica 3(4):192–195Google Scholar
  138. Liu B, Rong F, Jin H (1985) A new species of the genus Cordyceps. J Wuhan Bot Res 3(1):23–24Google Scholar
  139. Liu ZY, Liang ZQ, Whalley AJS, Yao YJ, Liu AY (2001) Cordyceps brittlebankisoides, a new pathogen of grubs and its a morph. Metarhizium anisopliae var majus J Invert Pathol 78(3):178–182CrossRefGoogle Scholar
  140. Lo HC, Hsu TH, Tu ST, Lin KC (2006) Anti-hyperglycemic activity of natural and fermented Cordyceps sinensis in rats with diabetes induced by nicotinamide and streptozotocin. Am J Chin Med 34:819–832CrossRefGoogle Scholar
  141. Lo HC, Hsieh C, Lin FY, Hsu TH (2013) A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in dong chong xia cao and related bioactive ingredients. J Tradit Complement Med 3(1):16–32CrossRefPubMedPubMedCentralGoogle Scholar
  142. Lu MC, Shazly ME, Wu TY, Du YC, Chang TT, Chen CF, Hsu YM, Lai KH, Chiu CP, Chang FR, Wu YC (2013) Recent research and development of Antrodia cinnamomea. Pharmacol Ther 139:124–156CrossRefPubMedGoogle Scholar
  143. Luerdara K, Kulsarin J, Buranapanichpan S, Tapingkae T (2015) Growth of Gold Cordyceps (Cordyceps militaris) on Pupae of Nanglai Thai Native Silkworm and Eri Silkworm. J Agri Chiang Mai University 32(1): 95 - 102Google Scholar
  144. Ma HT, Chen SZ (1991) Status and prospects on artificial cultivation of Cordyceps militaris. J Jinzhou Med Coll 12:63–65Google Scholar
  145. Mac Millan C (1898) Cordyceps stylophora Berk & Br, in Minnesota. Bull Torrey Bot Club 25:583Google Scholar
  146. Mains EB (1958) North American entomogenous species of Cordyceps. Mycologia 50(2):169–222CrossRefGoogle Scholar
  147. Massee G (1895) A revision of the genus Cordyceps. Ann Bot 9(33):1–44CrossRefGoogle Scholar
  148. Massee G (1899) Révision dugenre Cordyceps. Revue Mycologique 21:1–16Google Scholar
  149. Masuda M, Urabe E, Honda H, Sakurai A, Sakakibara M (2007) Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme Microb Technol 40:1199–1205CrossRefGoogle Scholar
  150. Mathieson J (1949) Cordyceps aphodii, a new species, on pasture cockchafer grubs. Trans Br Mycol Soc 32(2):113–135CrossRefGoogle Scholar
  151. Matsuda H, Akaki J, Nakamura S, Okazaki Y, Kojima H, Tamesada M et al (2009) Apoptosis-inducing effects of sterols from the dried powder of cultured mycelium of Cordyceps sinensis. Chem Pharm Bull 57:411–414CrossRefGoogle Scholar
  152. McLennan E, Cookson I (1926) Additions to Australian ascomycetes, no.2. Proc R Soc Victoria 38:69–76Google Scholar
  153. Miller D (1952) The insect people of the Maori. J Polynesian Soc 61(1–2):1–61Google Scholar
  154. Moingeon JM (2003) Réflexionssurlegenre Cordyceps. Bulletindela Société mycologiquede France 119(1–2):117–132Google Scholar
  155. Moller A (1901) Phycomycetenund Ascomyceten, Untersuchungenaus Brasilien, Botanische Mittheilungenausden Tropen 9, edited by A.F.W. Schimper, GustavFischer, JenaGoogle Scholar
  156. Moniz MF, Cabral MT, Tomaz IL, Basto MS (1999) On the appearance of amycosis in Phoracantha semipunctata (Fab.) larva. Silva Lusitana 7(1):49–54Google Scholar
  157. Moureau J (1949) Cordyceps du Congo Belge Mémoiresdel. Inst R Colonial Belge 7(5):1–58Google Scholar
  158. Mu X, Jia CF, Chen S et al (2010) Effects of light hours on growth and development of Cordyceps militaris. J Hebei Agric Sci 14(12):20–21Google Scholar
  159. Mueller GM, Bills GF, Foster MS (2011) Biodiversity of fungi: inventory and monitoring methods, 1st edn. Elsevier/Academic Press, Boston, MAGoogle Scholar
  160. Muller-Kogler E (1965) Cordyceps militaris (Fr.) Link: Beobachtungen und Versuche anlasslich eines Fundes auf Tipula paludosa Meig. (Dipt., Tipul.). Z Angew Entomol 55:409–418Google Scholar
  161. Maire R (1917) Champignons Nord-Africains nouveaux ou peu connus, Bulletin de la Soci´et´e d’Histoire Naturelle de l’Afrique du Nord 8(7):134–200Google Scholar
  162. Negi PS, Singh R, Koranga PR, Ahmed Z (2009) Biodiversity of Cordyceps in Himalayan hills of Uttarakhand, India. Abstr 5th Int Med Mushroom Conf Nantong Jiangsu, ChinaGoogle Scholar
  163. Negi PS, Singh R, Koranga PS, Ahmed Z (2012) Two new for science species of genus Cordyceps Fr.(Ascomycetes) from Indian Himalaya. Inter J Med Mushs 14(5):501–506CrossRefGoogle Scholar
  164. Nieukerken EJ, Kaila L, Kitching IJ et al (2011) Order Lepidoptera Linnaeus, 1758, in Animal Biodiversity: an Outline of Higher-Level Classification and Survey of Taxonomic Richness (Ed.) ZQ Zhang. Zootaxa 3148:212–221CrossRefGoogle Scholar
  165. Ohta Y, Lee JB, Hayashi K, Fujita A, Park DK, Hayashi T (2007) In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J Agric Food Chem 55:10194–10199CrossRefGoogle Scholar
  166. Olliff S (1895) Australian entomophytesor entomogenous fungi. Agric Gazett NSW 6:402–414Google Scholar
  167. Palfner G, Munõz VV, Escarate CG, Parra LE, Becerra J, Silva M (2012) Cordyceps cuncunae (Ascomycota, Hypocreales), a new pleoanamorphic species from temperate rainforest in southern Chile. Mycol Prog 11(3):733–739CrossRefGoogle Scholar
  168. Pan ZH, Gong CL, Zhu JZ (2002) Technology and application for industrial cultivation of Cordyceps militaris on pupae of Bombyx mori. Jiangsu Seric 24(3):21–24Google Scholar
  169. Panda AK, Swain KC (2011) Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. J Ayur Integr Med 2(1):9–13CrossRefGoogle Scholar
  170. Panigrahi A (1995) Fungus C. militaris infestation in the pupa of the tea pest Andraca bipunctata Walker. Environ Ecol 13:942–946Google Scholar
  171. Pao HY, Pan BS, Leu SF, Huang BM (2012) Cordycepin stimulated steroidogenesis in MA-10 mouse Leydig tumor cells through the protein kinase C pathway. J Agric Food Chem 60:4905–4913CrossRefGoogle Scholar
  172. Park C, Hong SH, Lee JY, Kim GY, Choi BT, Lee YT et al (2005) Growth inhibition of U937 leukemia cells by aqueous extract of Cordyceps militaris through induction of apoptosis. Oncol Rep 13:1211–1216PubMedGoogle Scholar
  173. Pen X (1995) The cultivation of Cordyceps militaris fruit body on artificial media and the determination of SOD. Acta Edulis Fungi 2(3):25–28Google Scholar
  174. Petch T (1937) Notes on entomogenous fungi. Trans Br Mycol Soc 21:1–2CrossRefGoogle Scholar
  175. Petch T (1948) A revised list of British entomogenous fungi. Trans Br Mycol Soc 31:3–4CrossRefGoogle Scholar
  176. P. S. Negi, R. Singh, P. S. Koranga, and Z. Ahmed, “Two new for science species of genus Cordyceps Fr. (Ascomycetes) from Indian Himalaya,” International Journal of Medicinal Mushrooms, vol. 14, no. 5, pp. 501–506, 2012.Google Scholar
  177. Pacioni G, Rossi W (1980) Nuove segnalazioni di funghi entomogeni, Giornale Botanico Italiano 114(3-4):169– 174Google Scholar
  178. Quandt CA, Kepler RM, Gams W et al (2014) Phylogenetic based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 5(1):121–134CrossRefPubMedPubMedCentralGoogle Scholar
  179. Rao YK, Fang SH, Tzeng YM (2007) Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol 114:78–85CrossRefPubMedPubMedCentralGoogle Scholar
  180. Ren SS (1998) Technical processes for artificial cultivation of Cordyceps militaris with high quality and quantity. Edible Fungi China 17(1):22–23Google Scholar
  181. Ren WY, Zhao H, Wu ZK (2009) Techniques for fast and high yielding cultivation of the valuable edible and medicinal mushroom Cordyceps militaris. China Agric Technol Ext 25(5):28–29Google Scholar
  182. Roth JJ, Clerc P (1997) Cordyceps michiganensis Mains (Ascomycetes, Clavicipitales), ouvelascomyce ‘tepourl’ Europe. Mycol Helv 9(1):29–37Google Scholar
  183. Russell R, Paterson M (2008) Cordyceps a traditional Chinese medicine and another fungal therapeutic biofactory. Phytochemistry 69:1469–1495CrossRefGoogle Scholar
  184. Sánchez-Peña SR (1990) Some insect and spider pathogenic fungi from Mexico with data on their host ranges. Fla Entomol 73:517–522CrossRefGoogle Scholar
  185. Sanjuan TI, Franco-Molano AE, Kepleretal RM (2015) Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical Ophiocordyceps. Fungal Biol 119(10):901–916CrossRefGoogle Scholar
  186. Sarovat S, Sudatis B, Meeslipa P, Grady BP, Magaraphen R (2003) The use of sericin as an nanoparticles for bioactive polyester. Carbohydr Polym 83(2):438–446Google Scholar
  187. Sato H, Shimazu M (2002) Homothallism in Cordyceps militaris. In: Book of abstracts, 7th international mycological congress, August 11-17, Oslo, Norway, p 311Google Scholar
  188. Sato H, Shimazu M, Kamata N (1994) Detection of Cordyceps militaris link (Clavicipitales: Clavicipitaceae) by burying pupae of Quadricalcarifera punctatella Motschulsky (Lepidoptera: Notodontidae). Appl Entomol Zoo 29(1):130–132CrossRefGoogle Scholar
  189. Shashidhar MG, Giridhar P, Sankar KU, Manohar (2013) Bioactive principles from Cordyceps sinensis: a potent food supplement – a review. J Func Foods 5(3):1013–1030CrossRefGoogle Scholar
  190. Shen NY, Zhou ZR, Zhang XC, San Z, Zeng L (1980) Preliminary research on Cordyceps sinensis. Chinese Trad Herbal Drug 11:273–275. (Chinese)Google Scholar
  191. Sheng L, Chen J, Li J, Zhang W (2011) An exopolysaccharide from cultivated Cordyceps sinensis and its effects on cytokine expressions of immunocytes. Appl Microbiol Biotechnol 163:669–678Google Scholar
  192. Shih IL, Tsai KL, Hsieh C (2007) Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem Eng J 33:193–201CrossRefGoogle Scholar
  193. Shimazu M, Mitsuhashi W, Hashimoto H (1988) Cordyceps brongniartii sp. nov., the teleomorph of Beauveria brongniartii. Trans Mycol Soc Jpn 29:323–330Google Scholar
  194. Shrestha B, Kim HK, Sung GH et al (2004) Bipolar heterothallism, a principal mating system of Cordyceps militaris in vitro. Biotechnol Bioprocess Eng 9:440–446CrossRefGoogle Scholar
  195. Shrestha B, Choi SK, Kim HK et al (2005a) Genetic analysis of pigmentation in Cordyceps militaris. Mycobiology 33:125–130CrossRefPubMedPubMedCentralGoogle Scholar
  196. Shrestha B, Han SK, Lee WH et al (2005b) Distribution and in vitro fruiting of Cordyceps militaris in Korea. Mycobiology 33:178–181CrossRefPubMedPubMedCentralGoogle Scholar
  197. Shrestha B, Zhang W, Zhang Y, Liu X (2012) The medicinal fungus Cordyceps militaris: research and development. Mycol Progress.  https://doi.org/10.1007/s11557-012-0825-y
  198. Shrestha B, Tanaka E, Hyun MW, Han JG, Kim CS, Jo JW, Han SK, Junsang O, Sung GH (2016) Coleopteran and Lepidopteran hosts of the Entomopathogenic genus Cordyceps sensu lato. J Mycol.  https://doi.org/10.1155/2016/7648219
  199. Song YD (2009) Inoculation experiment of Cordyceps militaris on Clanis bilineata. J Anhui Agric Sci 37:11010–11011Google Scholar
  200. Song D, He Z, Wang C, Yuan F, Dong P, Zhang W (2012) Regulation of the exopolysaccharide from an anamorph of Cordyceps sinensis on dendritic cell sarcoma (DCS) cell line. Eur J Nutr 52(2): 687-694Google Scholar
  201. Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF Jr (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16(8):1701–1711CrossRefPubMedGoogle Scholar
  202. Spegazzini CL (1919) Reliquiae mycologicae tropicaeet fungi costaricenses nonnulli. Boletindela Academia Nacionalde Cienciasen Córdoba 23:365–609Google Scholar
  203. Sprecher M, Sprinson DB (1963) A reinvestigation of the structure of ‘cordycepic acid’1a. J Org Chem 28:2490–2491CrossRefGoogle Scholar
  204. Stensrud Q, Hywel-Jones NL, Schumacher T (2005) Towards a phylogenetic classification of Cordyceps: ITS nrDNA sequence data confirm divergent lineages and paraphyly. Myco Res 109(1):41–56CrossRefGoogle Scholar
  205. Sung JM (1996) The insects-born fungus of Korea in color. Kyohak Publishing Co. Ltd., SeoulGoogle Scholar
  206. Sung JM, Shrestha B (2002) In vitro fruiting of Cordyceps militaris. In: Book of abstracts, 7th international mycological congress, August 11-17, Oslo, Norway, p 113Google Scholar
  207. Sung GH, Spatafora JW (2004) Cordyceps cardinalis sp. nov., a new species of Cordyceps with an east Asian-eastern North American distribution. Mycologia 96(3):658–666CrossRefPubMedGoogle Scholar
  208. Sung JM, Kim CH, Yang KJ et al (1993) Studies on the distribution and utilization of Cordyceps militaris and C. nutans. Korean J Mycol 21:94–105Google Scholar
  209. Sung JM, Choi YS, Lee HK et al (1999) Production of fruiting body using cultures of entomopathogenic fungal species. Korean J Mycol 27:15–19Google Scholar
  210. Sung JM, Choi YS, Shrestha B et al (2002) Investigation on artificial fruiting of Cordyceps militaris. Korean J Mycol 30:6–10CrossRefGoogle Scholar
  211. Sung JM, Park YJ, Lee JO et al (2006) Selection of superior strains of Cordyceps militaris with enhanced fruiting body productivity. Mycobiology 34:131–137CrossRefPubMedPubMedCentralGoogle Scholar
  212. Sung GH, Hywel-Jones NL, Sung JM et al (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59CrossRefPubMedPubMedCentralGoogle Scholar
  213. Slipinski S A, Leschen RA, Lawrence JF (2011) Order Coleoptera Linnaeus, 1758. In: Zhang, Z-Q. (Ed.), Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 203–208Google Scholar
  214. Sopp OJ (1911) Untersuchungen Uber Insekten-Vertilgende Pilze Bei den Letzten Kieferspinnerepidemien in Norwegen, vol. 2 of Skrift Vidensk-Selsk I. Mat-Naturv Klasse, Christiania, NorwayGoogle Scholar
  215. Teng SC (1934) Notes on hypocreales from China. Dermatol Sin 4(10):269–298Google Scholar
  216. Teng SC (1936) Additional fungi from China IV. Dermatol Sin 7(6):752–823Google Scholar
  217. Tsai YJ, Lin LC, Tsai TH (2010) Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat. J Agric Food Chem 58:4638–4643CrossRefPubMedGoogle Scholar
  218. Tuli HS, Sharma AK, Sandhu SS, Kashyapc D (2013) Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci 93(23):863–869CrossRefPubMedGoogle Scholar
  219. Tulasi G, Viswanath B (2013) Recent Trends To Improve Added Value Of Sericulture. International Journal of Advancements in Research & Technology 2(7):334-341Google Scholar
  220. T. Petch, (1934) Contributions to the Flora of Tropical America: XX. Bulletin of Miscellaneous Information (Royal Gardens, Kew) 1934 (5):202Google Scholar
  221. Vega FE, Meyling NV, Luangsa JJ, Blackwell M (2012) Fungal entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, London, pp 171–220CrossRefGoogle Scholar
  222. Vikineswary S, Wong KH, Murali N, Pamela RD (2013) Neuronal health can culinary and medicinal mushrooms help. J Tradit Complement Med 3:62–68CrossRefGoogle Scholar
  223. Wagner DL (2001) Moths. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, San Diego, pp 249–270CrossRefGoogle Scholar
  224. Wang XL, Yao YJ (2011) Host insect species of Ophiocordyceps sinensis: a review. ZooKeys 127:43–59CrossRefGoogle Scholar
  225. Wang SM, Lee LJ, Lin WW, Chang CM (1998) Effects of a water soluble extract of Cordyceps sinensis on steroidogenesis and capsular morphology of lipid droplets in cultured rat adrenocortical cells. J Cell Biochem 69:483–489CrossRefPubMedGoogle Scholar
  226. Wang XQ, Chen CQ, Zhang R (2002) Methodological studies on cultivation of Cordyceps militaris on pupae of Antheraea pernyi. J Anhui Agric Sci 30:965–968Google Scholar
  227. Wang BJ, Won SJ, Yu ZR, Su CL (2005) Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem Toxicol 43:543–552CrossRefPubMedGoogle Scholar
  228. Wang I, Zhang WM, Hu B, Chen YQ, Qu LH (2008) Genetic variation of Cordyceps militaris and its allies based on phylogenetic analysis of rDNA ITS sequence data. Fungal Divers 31:147–156Google Scholar
  229. Wang Y, Wang M, Ling Y, Fan W, Yin H (2009) Structural determination and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps sinensis. Am J Chin Med 37:977–989CrossRefPubMedGoogle Scholar
  230. Wang Y, Yin H, Lv X, Gao H, Wang M (2010) Protection of chronic renal failure by a polysaccharide from Cordyceps sinensis. Fitoterapia 81:397–402CrossRefPubMedGoogle Scholar
  231. Wang SH, Yang WB, Liu YC, Chiu YH, Chen CT, Kao PF et al (2011a) A potent sphingomyelinase inhibitor from Cordyceps mycelia contributes its cytoprotective effect against oxidative stress in macrophages. J Lipid Res 52:471–479CrossRefPubMedPubMedCentralGoogle Scholar
  232. Wang ZM, Peng X, Lee KL, Tang JC, Cheung PC, Wu JY (2011b) Structural characterization and immunomodulatory property of an acidic polysaccharide from mycelia culture of Cordyceps sinensis fungus Cs- HK1. Food Chem 125:637–643CrossRefGoogle Scholar
  233. Wang BS, Lee CP, Chen ZT, Yu HM, Duh PD (2012) Comparison of the hepatoprotective activity between cultured Cordyceps militaris and natural Cordyceps sinensis. J Funct Foods 4:489–495CrossRefGoogle Scholar
  234. Wang HP, Liu CW, Chang HW, Tsai JW, Sung YZ, Chang LC (2013) Cordyceps sinensis protects against renal ischemia/reperfusion injury in rats. Mol Biol Rep 40:2347–2355Google Scholar
  235. Wasson RG (1968) Soma: divine mushroom of immortality. New York Press, New York, pp 3–4Google Scholar
  236. Wei Q, Huang MQ (2009) Effects of nutrient ingredient in culture medium on the growth of Cordyceps militaris. Beijing Agric 27:36–38Google Scholar
  237. Wen L, Zhang YJ, Zhang TB et al (2004) Studies on culture of Cordyceps militaris on silkworm. Jiangsu Agric Sci 1:91–93Google Scholar
  238. Wen TC, Kang JC, Li GR et al (2008) Effects of different solid culture condition on fruit body and cordycepin output of Cordyceps militaris. Guizhou Agric Sci 36(4):92–94Google Scholar
  239. Wen TC, Xiao YP, Li WJ, Kang JC, Hyde KD (2014) Systematic analyses of Ophiocordyceps ramosissimum sp. nov., a new species from a larvae of Hepialidae in China. Phytotaxa 161(3):227–234CrossRefGoogle Scholar
  240. Willis JH (1959) Australian species of the fungal genus Cordyceps (Fr.) link with critical notes on collection in Australian herbaria. Muelleria 1:68–89Google Scholar
  241. Winkler D (2008) Yartsa gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot 62:291–305CrossRefGoogle Scholar
  242. Winkler D (2009) Caterpillar fungus (Ophiocordyceps sinensis) production and sustainability on the Tibetan plateau and in the Himalayas. Asian Med 5(2):291–316CrossRefGoogle Scholar
  243. Winkler D (2010) Caterpillar fungus (Ophiocordyceps sinensis) production and sustainability onthe Tibetan plateau and in the Himalayas. Chinese J Grassland (Supl) 32:96–108Google Scholar
  244. Wu YH, Zhu SY, Ding YH et al (1996) Artificial cultivation conditions of Cordyceps militaris and the analysis of its fruit body components. Acta Edulis Fungi 3(2):59–61Google Scholar
  245. Wu Y, Sun H, Qin F, Pan Y, Sun C (2006) Effect of various extracts and a polysaccharide from the edible mycelia of Cordyceps sinensis on cellular and humoral immune response against ovalbumin in mice. Phytother Res 20:646–652CrossRefPubMedGoogle Scholar
  246. Wen T C, Zhu RC, Kang JC et al. (2013) Ophiocordyceps xuefengensis sp. nov. from larvae of Phassus nodus (Hepialidae) in Hunan Province, southern China, Phytotaxa 123(1):41–50Google Scholar
  247. Xiao SR, Shi ZY, Chen OT (1983) Studies on Cordyceps habitat and morphology. Microbiology 10:5–6. (Chinese)Google Scholar
  248. Xie CY, Gu ZX, Fan GJ et al (2009) Production of cordycepin and mycelia by submerged fermentation of Cordyceps militaris in mixture natural culture. Appl Biochem Biotechnol 158:483–492CrossRefPubMedGoogle Scholar
  249. Yahagi N (2008) Illustrated catalogue of Japanese Cordyceps (entomonogenous fungi): the Yahagi collection of Japanese Cordyceps stored in the Tohoku University Museum. Bull Tohoku Univ Museum 8:29–89Google Scholar
  250. Yan JK, Li L, Wang ZM, Leung PH, Wang WQ, Wu JY (2009) Acidic degradation and enhanced antioxidant activities of exopolysaccharides from Cordyceps sinensis mycelial culture. Food Chem 117:641–646CrossRefGoogle Scholar
  251. Yan JK, Wang WQ, Li L, Wu JY (2011) Physiochemical properties and antitumor activities of two α-glucans isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohyd Polym 85:753–758CrossRefGoogle Scholar
  252. Yang ML, Kuo PC, Hwang TL, Wu TS (2011) Anti-inflammatory principles from Cordyceps sinensis. J Nat Prod 74:1996–2000CrossRefPubMedGoogle Scholar
  253. Yang ZL, Qin J, Xia C, Hu Q, Li QQ (2015) Ophiocordyceps highlandensis, a new entomopathogenic fungus from Yunnan, China. Phytotaxa 204(4):287–295CrossRefGoogle Scholar
  254. Yin DH, Zeng W, Li QS, Li L, Fu SQ, Huang TF, Luo OM (1990) Primary report on ecological investigation of Cordyceps sinensis resources in Ganzi, Sichuan. Living Things Speci Prod 5:10–13. (Chinese)Google Scholar
  255. Yoo HS, Shin JW, Cho JH, Son CG, Lee YW, Park SY et al (2004) Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacol Sin 25:657–665PubMedGoogle Scholar
  256. Yoon TJ, Yu KW, Shin KS, Suh HJ (2008) Innate immune stimulation of exo-polymers prepared from Cordyceps sinensis by submerged culture. Appl Microbiol Biotechnol 80:1087–1093CrossRefPubMedPubMedCentralGoogle Scholar
  257. Yoshikawa N, Nakamura K, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2007) Cordycepin and Cordyceps sinensis reduce the growth of human promyelocytic leukaemia cells through the Wnt signalling pathway. Clin Exp Pharmacol Physiol 34:61–63CrossRefGoogle Scholar
  258. Yu HM, Wang BS, Huang SC et al (2006) Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J Agric Food Chem 54:3132–3138CrossRefPubMedPubMedCentralGoogle Scholar
  259. Yu L, Zhao J, Zhu Q, Li SP (2007) Macrophage biospecific extraction and high performance liquid chromatography for hypothesis of immunological active components in Cordyceps sinensis. J Pharm Biomed Anal 44:439–443CrossRefPubMedPubMedCentralGoogle Scholar
  260. Yuan GH (1988) Domestication and cultivation of Cordyceps from Jilin Province. Edible Fungi 3:8Google Scholar
  261. Yuan GH (1989) Artificial cultivation of Cordyceps militaris. Life World 1:16–17Google Scholar
  262. Yue C (2010) Optimization on Cordyceps militaris’s cultivating conditions. Food Ind 2:60–61Google Scholar
  263. Yu Yamaguchi, Satomi Kagota, Kazuki Nakamura, Kazumasa Shinozuka, Masaru Kunitomo, (2000) Inhibitory effects of water extracts from fruiting bodies of culturedCordyceps sinensis on raised serum lipid peroxide levels and aortic cholesterol deposition in atherosclerotic mice. Phytotherapy Research 14 (8):650-652Google Scholar
  264. Zang M, Kinjo N (1998) Notes on the alpine Cordyceps of China and nearby nations. Mycotaxon 66:215–229Google Scholar
  265. Zang M, Yang D, Li C (1990) A new taxon in the genus Cordyceps from China. Mycotaxon 37:57–62Google Scholar
  266. Zhang YQ (2002) Applications of natural silk protein sericin in biomaterials. Biotechnology Advanced 20:91–96CrossRefGoogle Scholar
  267. Zhang XZ (2003) Biological characteristics and cultivation techniques of Cordyceps militaris C-48. Edible Fungi 25(S1):12Google Scholar
  268. Zhang XK, Liu WX (1997) Experimental studies on planting Cordyceps militaris (L. ex Fr.) link with different culture materials. Edible Fungi China 16(2):21–22Google Scholar
  269. Zhang J, Song DL, Chen JX (2003) Physiological and biochemical changes of the silkworm, Bombyx mori infected by Cordyceps militaris. Acta Entomol Sin 46:674–678Google Scholar
  270. Zhang WM, Li TH, Chen VQ, Qu LH (2004) Cordyceps campsosterna, a new pathogen of Campsosternus auratus. Fungal Divers 17:239–242Google Scholar
  271. Zhang W, Yang J, Chen J, Hou Y, Han X (2005) Immunomodulatory and antitumour effects of an exopolysaccharide fraction from cultivated Cordyceps sinensis (Chinese caterpillar fungus) on tumour bearing mice. BiotechnolAppl Biochem 42:9–15Google Scholar
  272. Zhang W, Li J, Qiu S, Chen J, Zheng Y (2008) Effects of the exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis on immunocytes of H22 tumor bearing mice. Fitoterapia 79:168–173CrossRefPubMedGoogle Scholar
  273. Zhao CY, Li H, Zhang M et al (2006) Optimization on conditions of artificial cultivation of Cordyceps militaris. J Shenyang Agric Univ 37:209–212Google Scholar
  274. Zheng QW, Wang YY, Gao SX (2008a) The study of Cordyceps militaris infecting the 5th instar silkworm. Edible Fungi 30(5):32–34Google Scholar
  275. Zheng SS, Xu C, Han NN et al (2008b) Optimum carbon source screening of Cordyceps militaris medium in artificial condition. J Heilongjiang August First Land Reclam Univ 20(1):8–11Google Scholar
  276. Zhou GQ, Han DH, Wan XX et al (2000) Behavior of Cordyceps militaris on the tussah and content of polysaccharide in fermentation liquid. J Dalian Inst Light Ind 19(2):108–111Google Scholar
  277. Zhou X, Luo L, Dressel W, Shadier G, Krumbiegel D, Schmidtke P et al (2008) Cordycepin is an immune regulatory active ingredient of Cordyceps sinensis. Am J Chin Med 3:967–980CrossRefGoogle Scholar
  278. Zhou X-W, Li L-J, Tian E-W (2013) Advances in research of the artificial cultivation of Ophiocordyceps sinensis in China. Crit Rev Biotechnol Online 1:11Google Scholar
  279. Zhu JS, Halpern GM, Jones K (1998) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis, part I. J Altern Complement Med 4(3):289–303CrossRefGoogle Scholar
  280. Zou Z, Liu X, Zhang G (2010) Revision of taxonomic system of the genus Hepialus (Lepidoptera: Hepialidae) currently adopted in China. J Hunan Univ Sci Tech (Natural Science Edition) 25(1):114–120Google Scholar
  281. Zhou X, Zhenghua Gong, Ying Su, Juan Lin, Kexuan Tang, (2009) Cordyceps fungi: natural products, pharmacological functions and developmental products. Journal of Pharmacy and Pharmacology 61 (3):279-291Google Scholar
  282. Zhao R, Guo C (2008) Optimizing on liquid culture media of Cordyceps sinensis mycelia. Journal of Tianjin Normal University (Natural Science Edition) 01Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rahul Chaubey
    • 1
  • Jitendra Singh
    • 2
  • Mohammed Muzeruddin Baig
    • 2
  • Amit Kumar
    • 3
  1. 1.Kala Azar Medical Research Center, Rambag RoadMuzaffarpurIndia
  2. 2.Central Tasar Research and Training InstituteNagri, RanchiIndia
  3. 3.Central Muga Eri Research and Training Institute, Central Silk Board, LahdoigarhJorhatIndia

Personalised recommendations