Extracellular Carbohydrate-Active Enzymes of Trichoderma and Their Role in the Bioconversion of Non-edible Biomass to Biofuel

  • Vivek Sharma
  • Richa Salwan
Part of the Fungal Biology book series (FUNGBIO)


The natural ability of Trichoderma species to secrete a wide array of enzymes, capable of targeting and hydrolysing complex plant biomass and fungal pathogens, finds diverse applications in biotechnology and agricultural, pharmaceutical and other industrial sectors. Secretion of lignocellulose-degrading enzymes in particular by Trichoderma species makes it one of the most explored fungi which has gained worldwide attention of researchers for biofuel production from agricultural biomass. In particular, Trichoderma reesei brought a paradigm shift for industrially relevant enzymes. Enzymes produced by Trichoderma species include cellulase complex which targets cellulose, xylanase which targets xylan and other non-glycosyl hydrolases. Mining genome and in silico analysis of reference strain T. reesei QM6a genomes and transcriptomes for carbohydrate-active enzymes (CAZyme) have led to the identification of several candidate genes. Besides this, laccase (phenol oxidase) and lytic mono-oxygenase system of Trichoderma have been explored for industrial applications. Here in this chapter, attempt has been made to discuss the role of extracellular carbohydrate-active enzymes of fungal origin with special emphasis on Trichoderma for their role in biofuel prpduction from non-edible biomass.


Biofuel Enzymes Extracellular Renewable Sustainable Trichoderma 



The authors are thankful to Chandigarh University for providing necessary infrastructure and SEED Division, Department of Science and Technology, GOI for providing financial benefits (SP/YO/125/2017).


  1. Abd El Monssef RA, Hassan EA, Ramadan EM (2016) Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. Ann Agric Sci 61(1):145–154CrossRefGoogle Scholar
  2. Ahmed S, Aslam N, Latif F, Rajoka MI, Jamil A (2005) Molecular cloning of cellulase genes from Trichoderma harzianum. Front Nat Prod Chem 1:73–75CrossRefGoogle Scholar
  3. Anbia M, Ghaffari A (2011) Removal of malachite green from dye wastewater using mesoporous carbon adsorbent. J Iran Chem Soc 8:67–76CrossRefGoogle Scholar
  4. Assavanig A, Amornkitticharoen B, Ekpaisal N, Meevootisom V, Flegel TW (1992) Isolation, characterization and function of laccase from Trichoderma. Appl Microbiol Biotechnol 38:198–202CrossRefGoogle Scholar
  5. Avanthi A, Banerjee R (2016) A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production. Ind Crops Prod 92:174–185CrossRefGoogle Scholar
  6. Ayrinhac C, Margeot A, Ferreira NL, Chaabane FB, Monot F, Ravot G et al (2011) Improved saccharification of wheat straw for biofuel production using an engineered secretome of Trichoderma reesei. Org Process Res Dev 15(1):275–278CrossRefGoogle Scholar
  7. Barnett CC, Berka RM, Fowler T (1991) Cloning and amplification of the gene encoding an extracellular β-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates. Nat Biotechnol 9(6):562–567CrossRefGoogle Scholar
  8. Barros-Rios J, Romani A, Peleteiro S, Garrote G, Ordas B (2016) Second-generation bioethanol of hydrothermally pretreated stover biomass from maize genotypes. Biomass Bioenergy 90:42–49CrossRefGoogle Scholar
  9. Bhatia R, Dogra RC, Sharma PK (2002) Construction of green fluorescent protein (GFP)-marked strains of Bradyrhizobium for ecological studies. J Appl Microbiol 93:835–839CrossRefPubMedPubMedCentralGoogle Scholar
  10. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290CrossRefGoogle Scholar
  11. Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X (2018) Metabolic engineering and enzyme-mediated processing: A biotechnological venture towards biofuel production – A review. Renew Sustain Energy Rev 82:436–447CrossRefGoogle Scholar
  12. Bischof R, Seiboth B (2014) Molecular tools for strain improvement of Trichoderma spp. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of trichoderma. Elsevier, Amsterdam, pp 179–191CrossRefGoogle Scholar
  13. Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira PA, de Souza AT, Dal'Mas RMMTS, Riaño-Pachón DM, Goldman GH, Oliveira JVC (2017) Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 18:501CrossRefPubMedPubMedCentralGoogle Scholar
  14. Buchert JTM, Kantelinen A, Viikari L (1995) Application of xylanases in the pulp and paper industry. Bioresour Technol 50:65–72CrossRefGoogle Scholar
  15. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238CrossRefPubMedPubMedCentralGoogle Scholar
  16. Catalano V, Vergara M, Hauzenberger JR, Seiboth B, Sarrocco S et al (2011) Use a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Curr Genet 57:13–23CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cavaco-Paulo A, Cortez J, Almeida L (1997) The effect of cellulase treatment in textile washing processes. J Soc Dyers Colour 113(7–8):218–222Google Scholar
  18. Cázares-García SV, Vázquez-Garcidueñas MS, Vázquez-Marrufo G (2013) Structural and phylogenetic analysis of laccases from Trichoderma: A bioinformatic approach. PLoS One 8(1):e55295CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chakroun H, Mechichi T, Martinez MJ, Dhouib A, Sayadi S (2010) Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: application on bioremediation of phenolic compounds. Process Biochem 45(4):507–513CrossRefGoogle Scholar
  20. Chandra M, Kalra A, Sangwan NS, Sangwan RS (2013) Biochemical and proteomic characterization of a novel extracellular β-glucosidase from Trichoderma citrinoviride. Mol Biotechnol 53(3):289–299CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen LL, Zhang M, Zhang DH, Chen XL, Sun CY, Zhou BC et al (2009) Purification and enzymatic characterization of two β-endoxylanases from Trichoderma sp. K9301 and their actions in xylooligosaccharide production. Bioresour Technol 100:5230–5236CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cheng P, Liu B, Su Y, Hu Y, Hong Y, Yi X, Chen L, Su S, Chu JSC, Chen N, Xiong X (2017) Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains. Microb Cell Fact 16(1):1–16CrossRefGoogle Scholar
  23. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443Google Scholar
  24. Chirino-Valle I, Kandula D, Littlejohn C, Hill R, Walker M, Shields M, Wratten S (2016) Potential of the beneficial fungus Trichoderma to enhance ecosystem-service provision in the biofuel grass Miscanthus × giganteus in agriculture. Sci Rep 6:1–8CrossRefGoogle Scholar
  25. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cologna NMD, Gómez-Mendoza DP, Zanoelo FF, Giannesi GC, Guimarães NCA, Moreira LRS, Filho EXF, Ricart CAO (2018) Exploring Trichoderma and Aspergillus secretomes: Proteomics approaches for the identification of enzymes of biotechnological interest. Enzym Microb Technol 109:1–10Google Scholar
  27. de Porciuncula JO, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W (2013) Identification of major facilitator transporters involved in cellulase production during lactose culture of Trichoderma reesei PC-3-7. Biosci Biotechnol Biochem 77(5):1014–1022CrossRefGoogle Scholar
  28. dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98(12):2369–2385CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dekker RFH, Barbosa AM, Sargent K (2002) The effect of lignin-related compounds on the growth and production of laccases by the ascomycete Botryosphaeria sp. Enzym Microb Technol 30:374–380CrossRefGoogle Scholar
  31. Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49:2106–2116CrossRefGoogle Scholar
  32. Dias AA, Sampaio A, Bezerra RM (2007) Environmental applications of fungal and plant systems: decolourisation of textile wastewater and related dyestuffs. In: Environmental bioremediation technologies. Springer, Berlin/Heidelberg, pp 445–463CrossRefGoogle Scholar
  33. Divya LM, Prasanth GK, Sadasivan C (2013) Isolation of a salt tolerant laccase secreting strain of Trichoderma sp. NFCCI-2745 and optimization of culture conditions and assessing its effectiveness in treating saline phenolic effluents. J Environ Sci (China) 25(12):2410–2416CrossRefGoogle Scholar
  34. Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy 1:2–17CrossRefPubMedPubMedCentralGoogle Scholar
  35. Donohoue PD, Barrangou R, May AP (2018) Advances in industrial biotechnology using CRISPR-Cas Systems. Trends Biotechnol 36(2):134–146CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dos Santos Castro L, Pedersoli WR, Antoniêto ACC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM et al (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analysis. Biotechnol Biofuels 7:41CrossRefPubMedPubMedCentralGoogle Scholar
  37. Eveleigh DE, Montenecourt BS (1979) Increasing yields of extracellular enzymes. Adv Appl Microbiol 25:57–74Google Scholar
  38. Eveleigh DE (1982) Reducing the cost of cellulase production-selection of the hypercellulolytic Trichoderma reesei RUT-C30 mutant. Rutgers University, New BrunswickGoogle Scholar
  39. Fang H, Xia L (2013) High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production. Bioresour Technol 144:693–697CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ferreira Filho JA, Horta MAC, Beloti LL, Dos Santos CA, de Souza AP (2017) Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry. BMC Genomics 18(1):779Google Scholar
  41. Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJM, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278(34):31988–31997CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fowler T, Brown RD (1992) The bgI1 gene encoding extracellular β-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol 6(21):3225–3235CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gao J et al. (2017) Biotechnology for biofuels production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma Reesei. Biotechnol Biofuels 10:274Google Scholar
  44. Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sust Energ Rev 73:205–214CrossRefGoogle Scholar
  45. Gerber PJ, Heitmann JA, Joyce TW (1997) Purification and characterization of xylanases from Trichoderma. Bioresour Technol 61(2):127–140CrossRefGoogle Scholar
  46. Gochev VK, Krastanov AI (2007) Isolation of laccase producing Trichoderma spp. Bulg J Agric Sci 13:171–176Google Scholar
  47. Gong W, Zhang H, Liu S, Zhang L, Gao P, Chen G, Wang LS (2015) Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Appl Biochem Biotechnol 177(6):1252–1271CrossRefPubMedPubMedCentralGoogle Scholar
  48. Guo B, Sato N, Biely P, Amano Y, Nozaki K (2016) Comparison of catalytic proper- ties of multiple β-glucosidases of Trichoderma reesei. Appl Microbiol Biotechnol 100:4959–4968CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567CrossRefGoogle Scholar
  50. Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP (2007) Design of highly efficient cel- lulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97(5):1028–1038CrossRefPubMedPubMedCentralGoogle Scholar
  51. Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 11:1–26CrossRefGoogle Scholar
  52. Halaburgi VM, Sharma S, Sinha M, Singh TP, Karegoudar TB (2011) Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications. Process Biochem 46:1146–1152CrossRefGoogle Scholar
  53. He J, Yu B, Zhang K, Ding X, Chen D (2009) Expression of endo-1,4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol 9:56CrossRefPubMedPubMedCentralGoogle Scholar
  54. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316CrossRefPubMedPubMedCentralGoogle Scholar
  55. Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, Mathis H, Sigoillot J, Monot F, Asther M (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:18CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466CrossRefGoogle Scholar
  57. Holker H, Dohse J, Hofer M (2002) Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiol 47:423–427CrossRefGoogle Scholar
  58. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hu J, Chandra R, Arantes V, Gourlay K, van Dyk JS, Saddler JN (2015) The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresour Technol 186:149–153CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hu JG, Arantes V, Pribowo A, Gourlay K, Saddler JN (2014) Substrate factors that infuence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energ Environ Sci 7:2308–2315Google Scholar
  61. Jeng WY, Wang NC, Lin MH, Lin CT, Liaw YC, Chang WJ et al (2011) Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol 173(1):46–56CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jeya M, Zhang WY, Kin IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol 100(21):5155–5161CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134CrossRefGoogle Scholar
  64. Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30:1219–1227CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: currentcurrent findings determine research priorities. Sci World J 2014:1–13Google Scholar
  66. Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100:1515–1523CrossRefGoogle Scholar
  67. Knob A, Terrasan C, Carmona E (2010) β-xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407CrossRefGoogle Scholar
  68. Kolomytseva M, Myasoedova N, Samoilova A, Podieiablonskaia E, Chernykh A, Classen T, Golovleva L (2017) Rapid identification of fungal laccases/oxidases with different pH-optimum. Process Biochem 62:174–183CrossRefGoogle Scholar
  69. Krastanov AI, Gochev VK, Girova TD (2007) Nutritive medium dependent biosynthesis of extracellular laccase from Trichoderma spp. Bulg J Agric Sci 13:349–355Google Scholar
  70. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res 2:280696Google Scholar
  71. Kumar S, Phale P, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kurasin M, Valjamae P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–178CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ladeira Ázar RIS, Morgan T, dos Santos ACF, de Aquino XE, Ladisch MR, Guimarães VM (2018) Deactivation and activation of lignocellulose degrading enzymes in the presence of laccase. Enzyme Microb Technol 109:25–30CrossRefPubMedPubMedCentralGoogle Scholar
  75. Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed β-glucosidase. J Biol Chem 270:15789–15797CrossRefPubMedPubMedCentralGoogle Scholar
  76. Levasseur A, Saloheimo M, Navarro D, Andberg M, Pontarotti P et al (2010) Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study. BMC Biochem 11:32CrossRefPubMedPubMedCentralGoogle Scholar
  77. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41Google Scholar
  78. Li B, Walton JD (2017) Functional diversity for bio- mass deconstruction in family 5 subfamily 5 (GH5_5) of fungal endo-β-1,4-glucanases. Appl Microbiol Biotechnol 101:4093–4101CrossRefPubMedPubMedCentralGoogle Scholar
  79. Li C, Lin F, Li Y, Wei W, Wang H, Qin L et al (2016) A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microb Cell Fact 15(1):1–13CrossRefGoogle Scholar
  80. Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1–11:15007CrossRefGoogle Scholar
  81. Ma K, Ruan Z (2015) Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour Technol 175:586–593CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ma L, Zhang J, Zou G, Wang C, Zhou Z (2011) Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta- glucosidase gene from Penicillium decumbens. Enzyme Microb Technol 49(4):366–371CrossRefPubMedPubMedCentralGoogle Scholar
  83. Madhavi V, Lele SS (2009) Laccase: properties and applications. Bioresources 4:1694–1717Google Scholar
  84. Mangan D, Cornaggia C, Liadova A, McCormack N, Ivory R, McKie VA et al (2017) Novel substrates for the automated and manual assay of endo-1,4-β-xylanase. Carbohydr Res 445:14–22CrossRefPubMedPubMedCentralGoogle Scholar
  85. Mansur M, Arias ME, Copa-Patiño JL, Flärdh M, González AE (2003) The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities. Mycologia 95(6):1013–1020CrossRefPubMedPubMedCentralGoogle Scholar
  86. Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20(3):372–380CrossRefPubMedPubMedCentralGoogle Scholar
  87. Margolles-Clark E, Saloheimo M, Siika-aho M, Penttilä M (1996a) The α-glucuronidase-encoding gene of Trichoderma reesei. Gene 172(1):171–172CrossRefPubMedPubMedCentralGoogle Scholar
  88. Margolles-Clark E, Tenkanen M, Luonteri E, Penttilä M (1996b) Three α- galactosidase genes of Trichoderma reesei cloned by expression in yeast. Eur J Biochem 240(1):104–111CrossRefPubMedPubMedCentralGoogle Scholar
  89. Margolles-Clark E, Tenkanen M, Nakari-Setala T, Penttila M (1996c) Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62(10):3840–3846PubMedPubMedCentralGoogle Scholar
  90. Margolles-Clark E, Tenkanen M, Soderlund H, Penttila M (1996d) Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. Eur J Biochem 237(3):553–560CrossRefPubMedPubMedCentralGoogle Scholar
  91. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560CrossRefPubMedPubMedCentralGoogle Scholar
  92. Martinez AT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutierrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20(3):348–357CrossRefPubMedPubMedCentralGoogle Scholar
  93. Marx IJ, vanWyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H (2013) Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels 6(1):1–13CrossRefGoogle Scholar
  94. Min SY, Kim BG, Lee C, Hur H-G, Ahn JH (2002) Purification, characterization and cDNA cloning of xylanase from fungus Trichoderma strain SY. J Microbiol Biotechnol 12:890–894Google Scholar
  95. Monclaro AV, Filho EXF (2017) Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown. Int J Biol Macromol 102:771–778CrossRefPubMedPubMedCentralGoogle Scholar
  96. Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007) Blue laccases. Biochemistry (Mosc) 72:1136–1150CrossRefGoogle Scholar
  97. Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg C (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ning Z, Liu J, Yang J, Lin Y, Yi Y, Lei J, Li M, Yuan HL (2016) Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system. Biotechnol Biofuels 9(1):1–22CrossRefGoogle Scholar
  99. Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W (2012) A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates beta-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 49(5):388–397CrossRefPubMedPubMedCentralGoogle Scholar
  100. Obeng EM, Adam SNN, Budiman C. Ongkudon CM, Jose RMJ (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4:41–22Google Scholar
  101. Okada H, Tada K, Sekiya T, Yokoyama K, Takahashi A, Tohda H, Kumagai H, Morikawa Y (1998) Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414. Appl Environ Microbiol 64(2):555–563PubMedPubMedCentralGoogle Scholar
  102. Paes G, Berrin J-G, Beaugrand J (2012) GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 30(3):564–592CrossRefPubMedPubMedCentralGoogle Scholar
  103. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M et al (2015) Fungal cellulases. Chem Rev 115:1308–1448CrossRefPubMedPubMedCentralGoogle Scholar
  104. Peciulyte A, Anasontzis GE, Karlström K, Larsson PT, Olsson L (2014) Morphology and enzyme production of Trichoderma reesei rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genet Biol 72:64–72CrossRefPubMedPubMedCentralGoogle Scholar
  105. Penttilä M, Lehtovaara P, Nevalainen H, Bhikhabhai R, Knowles J (1986) Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45(3):253–263CrossRefPubMedPubMedCentralGoogle Scholar
  106. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30– thirty years of strain improvement. Microbiology 158(Pt 1):58–68CrossRefPubMedPubMedCentralGoogle Scholar
  107. Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2(1):23CrossRefGoogle Scholar
  108. Pokorny R, Vargovic P, Holker U, Janssen M, Bend J et al (2005) Developmental changes in Trichoderma viride enzymes abundant in conidia and the light-induced conidiation signalling pathway. J Basic Microbiol 45:219–229CrossRefPubMedPubMedCentralGoogle Scholar
  109. Polizeli MLT, Rizzati ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591CrossRefPubMedPubMedCentralGoogle Scholar
  110. Pryor SW, Nahar N (2015) β-glucosidase supplementation during biomass hydrolysis: how low can we go? Biomass Bioenergy 80:298–302CrossRefGoogle Scholar
  111. Puls J, Schuseil J (1993) Chemistry of hemicellulose: relationship between hemicellulose structure and enzymes required for hydrolysis. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 1–27Google Scholar
  112. Qian Y, Zhong L, Hou Y, Qu Y, Zhong Y (2016) Characterization and strain improvement of a hypercellulytic variant, Trichoderma reesei SN1, by genetic engineering for optimized cellulase production in biomass conversion improvement. Front Microbiol 7:1349CrossRefPubMedPubMedCentralGoogle Scholar
  113. Qian Y, Zhong L, Gao J, Sun N, Wang Y, Sun G et al (2017) Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues. Microb Cell Fact 16(1):1–16CrossRefGoogle Scholar
  114. Ramoni J, Marchetti-Deschmann M, Seidl-Seiboth V, Seiboth B (2017) Trichoderma reesei xylanase 5 is defective in the reference strain QM6a but functional alleles are present in other wild-type strains. Appl Microbiol Biotechnol 101(10):4139–4149Google Scholar
  115. Ravalason H, Grisel S, Chevret D, Favel A, Berrin JG, Sigoillot JC, Herpoël-Gimbert I (2012) Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw. Bioresour Technol 114(2):589–596CrossRefPubMedPubMedCentralGoogle Scholar
  116. Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS (2007) Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 23(6):1270–1276CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sadhasivam S, Savitha S, Swwaminathan K (2009) Redox-mediated decolorization of recalcitrant textile dyes by Trichoderma harzianum WL1 laccase. World J Microbiol Biotechnol 25:1733–1741CrossRefGoogle Scholar
  118. Saloheimo M, Niku-Paavola ML (1991) Heterologous production of a ligninolytic enzyme: Expression of the Phlebia radiata laccase gene in Trichoderma reesei. Nat Biotechnol 9(10):987–990CrossRefGoogle Scholar
  119. Saloheimo A, Henrissat B, Hoffrén AM, Teleman O, Penttilä M (1994) A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol Microbiol 13(2):219–228Google Scholar
  120. Saloheimo M, Pakula TM (2012) The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology 158:46–57CrossRefPubMedPubMedCentralGoogle Scholar
  121. Saloheimo M, Nakari-Setälä T, Tenkanen M, Penttilä M (1997) cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur J Biochem 249(2):584–591CrossRefPubMedPubMedCentralGoogle Scholar
  122. Saloheimo M, Kuja-Panula J, Ylosmaki E, Ward M, Penttila M (2002a) Enzymatic properties and intracellular localization of the novel Trichoderma reesei beta-glucosidase BGLII (cel1A). Appl Microbiol Biotechnol 68(9):4546–4553Google Scholar
  123. Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002b) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):4202–4211CrossRefPubMedPubMedCentralGoogle Scholar
  124. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefPubMedPubMedCentralGoogle Scholar
  125. Seiboth B, Ivanova C, Seidl-Seiboth V (2011) Trichoderma reesei: a fungal enzyme producer for cellulosic biofuels. In: dos Santos Bernardes MA (ed) Biofuel production recent developments and prospects. InTech, Rijeka, pp 309–340Google Scholar
  126. Shanmugam S, Hari A, Ulaganathan P, Yang F, Krishnaswamy S, Wu YR (2018) Potential of biohydrogen generation using the delignified lignocellulosic biomass by a newly identified thermostable laccase from Trichoderma asperellum strain BPLMBT1. Int J Hydrogen Energy 43(7):3618–3628CrossRefGoogle Scholar
  127. Sharma V, Shanmugam V (2012) Purification and characterization of an extracellular 24 kDa chitobiosidase from the mycoparasitic fungus Trichoderma saturnisporum. J Basic Microbiol 52:324–331CrossRefPubMedPubMedCentralGoogle Scholar
  128. Sharma V, Bhandari P, Singh B, Bhatacharya A, Shanmugam V (2013) Chitinase expression due to reduction in fusaric acid level in an antagonistic Trichoderma harzianum S17TH. Indian J Microbiol 53(2):214–220CrossRefPubMedPubMedCentralGoogle Scholar
  129. Sharma V, Salwan R, Sharma PN (2016a) Differential response of extracellular proteases of Trichoderma harzianum against fungal phytopathogens. Curr Microbiol 73(3):419–425CrossRefPubMedPubMedCentralGoogle Scholar
  130. Sharma V, Salwan R, Sharma PN, Kanwar SS (2016b) Molecular cloning and characterization of ech46 endochitinase from Trichoderma harzianum. Int J Biol Macromol 92:615–624CrossRefPubMedPubMedCentralGoogle Scholar
  131. Sharma V, Salwan R, Sharma PN, Gulati A (2017a) Integrated translatome and proteome: approach for accurate portraying of widespread multifunctional aspects of Trichoderma. Front Microbiol 8:1602Google Scholar
  132. Sharma V, Salwan R, Sharma PN (2017b) The comparative mechanistic aspects of Trichoderma and Probiotics: Scope for future research. Physiol Mol Plant Pathol 100:84–96CrossRefGoogle Scholar
  133. Sharma V, Salwan R, Sharma PN, Kanwar SS (2017c) Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response. Int J Biol Macromol 95:72–79CrossRefPubMedPubMedCentralGoogle Scholar
  134. Sharma V, Salwan R, Shanmugam V (2018a) Unraveling the multilevel aspects of least explored plant beneficial Trichoderma saturnisporum isolate GITX-Panog (C). Eur J Plant Pathol 152(1):169–183Google Scholar
  135. Sharma V, Salwan R, Shanmugam V (2018b) Molecular characterization of β-endoglucanase from antagonistic Trichoderma saturnisporum isolate GITX-Panog (C) induced under mycoparasitic conditions. In Press Pest Biochem Physiol 149:73–80CrossRefGoogle Scholar
  136. Shida Y, Yamaguchi K, Nitta M, Nakamura A, Takahashi M, Kidokoro S, Mori K, Tashiro K, Kuhara S, Matsuzawa T et al (2015) The impact of a single- nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Biotechnol Biofuels 8:230CrossRefPubMedPubMedCentralGoogle Scholar
  137. Silveira FQP, Sousa MV, Ricart CAO, Milagres AMF, Medeiros CL, Filho EXF (1999) A new xylanase from a Trichoderma harzianum strain. J Ind Microbiol Biotechnol 23:682–685CrossRefGoogle Scholar
  138. Sindhu R, Kuttiraja M, Prabisha TP, Binod P, Sukumaran RK, Pandey A (2016) Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer. Bioresour Technol 215:110–116CrossRefPubMedPubMedCentralGoogle Scholar
  139. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46(7):541–549CrossRefGoogle Scholar
  140. Song B et al. (2018) Real-Time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility. Biotechnol Biofuels 11(1):41Google Scholar
  141. Stahlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1157:107–113CrossRefPubMedPubMedCentralGoogle Scholar
  142. Stalbrand H, Saloheimo A, Vehmaanpera J, Henrissat B, Penttila M (1995) Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei beta- mannanase gene containing a cellulose binding domain. Appl Environ Microbiol 61(3):1090–1097PubMedPubMedCentralGoogle Scholar
  143. Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1999) Molecular cloning and expression of the novel fungal β-glucosidase genes from Humicola grisea and Trichoderma reesei. J Biochem 125(4):728–736CrossRefPubMedPubMedCentralGoogle Scholar
  144. Tenkanen M, Puls J, Poutanen K (1992) Two major xylanases of Trichoderma reesei. Enzyme Microb Technol 14(7):566–574CrossRefGoogle Scholar
  145. Tiwari P, Misra BN, Sangwan NS (2013) β-glucosidases from the fungus Trichoderma: An efficient cellulase machinery in biotechnological applications. Biomed Res Int 2013:203735CrossRefPubMedPubMedCentralGoogle Scholar
  146. Torronen A, Mach RL, Messner R, Gonzalez R, Kalkkinen N, Harkki A, Kubicek CP (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Nat Biotech 10(11):1461–1465CrossRefGoogle Scholar
  147. Trichoderma reesei genome database v2.0.
  148. Tsao GT, Chiang L-C (1983) Cellulose and hemicellulose technol-ogy. In: Smith JE, Berry DR, Kristiansen B (eds) The filamentous fungi, vol 4. Edward Arnold, London, pp 296–326Google Scholar
  149. Villares A, Moreau C, Bennati-Granier C, Garajova S, Foucat L, Falourd X et al (2017) Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci Rep 7:1–9CrossRefGoogle Scholar
  150. Vu VV, Marletta MA (2016) Starch-degrading polysaccharide monooxygenases. Cell Mol Life Sci 73(14):2809–2819CrossRefPubMedPubMedCentralGoogle Scholar
  151. Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA (2014) A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci U S A 111(38):13822–13827CrossRefPubMedPubMedCentralGoogle Scholar
  152. Wan C, Zhou Y, Li Y (2001) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol 102(10):6254–6259CrossRefGoogle Scholar
  153. Wang B, Xia L (2011) High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei. Bioresour Technol 102(6):4568–4572CrossRefPubMedPubMedCentralGoogle Scholar
  154. Wang Q, Chen L, Yu D, Lin H, Shen Q, Zhao Y (2017) Excellent waste biomass-degrading performance of Trichoderma asperellum T-1 during submerged fermentation. Sci Total Environ 609:1329–1339CrossRefPubMedPubMedCentralGoogle Scholar
  155. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299CrossRefPubMedPubMedCentralGoogle Scholar
  156. Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: Functions and applications. Microbiol Rev 52:305–317PubMedPubMedCentralGoogle Scholar
  157. Xu J, Takakuwa N, Nogawa M, Okada H, Okada H (1998) A third xylanase from Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 49(6):718–724CrossRefGoogle Scholar
  158. Xu J, Zhao G, Kou Y, Zhang W, Zhou Q, Chen G, Liu W (2014) Intracellular beta- glucosidases CEL1a and CEL1b are essential for cellulase induction on lactose in Trichoderma reesei. Eukaryot Cell 13(8):1001–1013CrossRefPubMedPubMedCentralGoogle Scholar
  159. Younes SB, Sayadi S (2011) Purification and characterization of a novel trimeric and thermotolerant laccase produced from the ascomycete Scytalidium thermophilum strain. J Mol Catal B Enzym 73:35–42CrossRefGoogle Scholar
  160. Zagrobelny M, Bak S, Moller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69:1457–1468CrossRefPubMedPubMedCentralGoogle Scholar
  161. Zeilinger S, Kristufek D, Arisan-Atac I, Hodits R, Kubicek CP (1993) Conditions of formation, purification, and characterization of an alpha-galactosidase of Trichoderma reesei RUT C-30. Appl Environ Microbiol 59(5):1347–1353PubMedPubMedCentralGoogle Scholar
  162. Zhang J, Zhong Y, Zhao X, Wang T (2010) Development of the cellulolytic fungus Trichoderma reesei strain with enhanced beta-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Bioresour Technol 101(24):9815–9818CrossRefPubMedPubMedCentralGoogle Scholar
  163. Zhang Q, Huang H, Han H, Qiu Z, Achal V (2017) Stimulatory effect of in-situ detoxification on bioethanol production by rice straw. Energy 135:32–39CrossRefGoogle Scholar
  164. Zhang XY, Zi LH, Ge XM, Li YH, Liu CG, Bai FW (2017) Development of Trichoderma reesei mutants by combined mutagenesis and induction of cellulase by low-cost corn starch hydrolysate. Process Biochem 54:96–101CrossRefGoogle Scholar
  165. Zhao J, Xia L (2009) Simultaneous saccharification and fermentation of alkaline- pretreated corn stover to ethanol using a recombinant yeast strain. Fuel Process Technol 90:1193–1197CrossRefGoogle Scholar
  166. Zhao J, Xia L (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem Eng J 49:28–32CrossRefGoogle Scholar
  167. Zhao LL, Ou XM, Chang SY (2016) Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: current perspectives and future prospectives. Energy 115:303–313CrossRefGoogle Scholar
  168. Zhao C, Zou Z, Li J, Jia H, Liesche J, Chen S, Fang H (2018a) Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production. Renew Energy 118:14–24CrossRefGoogle Scholar
  169. Zhao J, Zeng S, Xia Y, Xia L (2018b) Expression of a thermotolerant laccase from Pycnoporus sanguineus in Trichoderma reesei and its application in the degradation of bisphenol A. J Biosci Bioeng 125(4):371–376CrossRefPubMedPubMedCentralGoogle Scholar
  170. Zhou J, Wang Y, Chu J, Zhuang Y, Zhang S, Yin P (2008) Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresour Technol 99(15):6826–6833CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zhou J, Wang Y, Chu J, Luo L, Zhuang Y, Zhang S (2009) Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour Technol 100(2):819–825CrossRefPubMedPubMedCentralGoogle Scholar
  172. Zhou P, Zhu H, Yan Q, Katrolia P, Jiang Z (2011) Purification and properties of a psychrotrophic Trichoderma sp. xylanase and its gene sequence. Appl Biochem Biotechnol 164:944–956CrossRefPubMedPubMedCentralGoogle Scholar
  173. Zhou Q, Xu J, Kou Y, Lv X, Zhang X, Zhao G, Zhang W, Chen G, Liu W (2012) Differential involvement of beta-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot Cell 11(11):1371–1381CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vivek Sharma
    • 1
  • Richa Salwan
    • 2
  1. 1.University Centre for Research and Development, Chandigarh UniversityGharuanIndia
  2. 2.Department of Social Science and Basic SciencesCollege of Horticulture and ForestryHamirpurIndia

Personalised recommendations