Industrially Important Pigments from Different Groups of Fungi

  • Ashok Kumar
  • Srishti Prajapati
  • Nikhil
  • Smriti Nandan
  • Trisha Guha Neogi
Part of the Fungal Biology book series (FUNGBIO)


The worldwide tendency in the current era is to increase the use of natural pigments instead of synthetic ones. Relative to the toxic effects of synthetic pigments, natural pigments are easily degradable because they have no detrimental effects. So, alternative and effective environment eco-friendly sustainable technologies are highly needed. Fungi were recognized back in 1920. Because they have broad range of biological activities, fungi have been considered as a significant source of pigments. Among the fungal species in the soil, the genera Aspergillus, Fusarium, Penicillium, Paecilomyces, Epicoccum, Lecanicillium, Monascus, and Trichoderma are dominant for pigment production. The pigments commonly produced by fungi are such as arotenoids, melanins, quinones, flavins, ankaflavin, anthraquinone, naphthoquinone, and carotene. The use of fungal pigments has such benefits as easy and fast growth in inexpensive culture medium and different color shades, independent of weather conditions, and would be useful in various industrial applications. Pigments produced by soil fungi have tremendous use in medicines, textile coloring, food coloring, and cosmetics because of the important biological activities of these compounds.


Color Dyes Fungi Industrial application Pigments Metabolites 



The authors are very grateful to Professor Saket Kushwaha, Vice Chancellor, Rajiv Gandhi University, Itanagar, and Arunachal Pradesh, formerly Professor In-Charge, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India, for all necessary facilities, valuable suggestions, and cooperation during the course of this investigation.


  1. Aasen AJ, Jensen SL (1965) Fungal carotenoids. II. The structure of the carotenoid acid neurosporaxanthin. Acta Chem Scand 19:1843–1853CrossRefPubMedGoogle Scholar
  2. Asilonu E, Bucke C, Keshavarz T (2000) Enhancement of chrysogenin production in cultures of Penicillium chrysogenum by uronic acid oligosaccharides. Biotechnol Lett 22:931–936CrossRefGoogle Scholar
  3. Atalla MM, El-Khrisy E, Youssef Y, Mohamed A (2011) Production of textile reddish brown dyes by fungi. Malays J Microbiol 7:33–40Google Scholar
  4. Babula P, Adam V, Havel L, Kizek R (2009) Noteworthy secondary metabolites naphthoquinones—occurrence, pharmacological properties and analysis. Curr Pharm Anal 5:47–68CrossRefGoogle Scholar
  5. Bachmann O, Kemper B, Musso H (1986) The green pigment from the fungus Roesleria hypogea. Liebigs Annalen Der Chemie 1986:305–309CrossRefGoogle Scholar
  6. Blanc PJ, Loret MO, Santerre AL, Pareilleux A, Prome D, Prome JC, Laussac JC, Goma G (1994) Pigments of Monascus. J Food Sci 59:862–865CrossRefGoogle Scholar
  7. Boonyapranai K, Tungpradit R, Hieochaiphant S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J Sci 35:457–466Google Scholar
  8. Brikinshaw JH, Kalyanpur MG, Stickings CE (1963) Studies in the biochemistry of microorganisms. 113. Pencolide a nitrogen containing metabolite of Penicillium multicolor Grigorieva-Manilova and Poradielova. Biochem J 86:237–243CrossRefGoogle Scholar
  9. Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufosse L (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2:174–193CrossRefPubMedCentralGoogle Scholar
  10. Chadni Z, Rahaman MH, Jerin I, Hoque KMF, Reza MA (2017) Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycology 8:48–57CrossRefGoogle Scholar
  11. Chen G, Shi K, Song D, Quan L, Wu Z (2015) The pigment characteristics and productivity shifting in high cell density culture of Monascus anka mycelia. BMC Biotechnol 15:72CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chitale A, Jadhav DV, Waghmare SR, Sahoo AK, Ranveer RC (2012) Production and characterization of brown colored pigment from Trichoderma viride. Electron J Environ Agric Food Chem 11:529–537Google Scholar
  13. Cole RJ, Kirksey JW, Cutler HG, Davis EE (1974) Toxic effects of oosporein from Chaetomium trilaterale. J Agric Food Chem 22:517–520CrossRefPubMedGoogle Scholar
  14. Díaz-Sánchez V, Estrada AF, Trautmann D, Al-Babili S, Avalos J (2011) The gene card encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J 278:3164–3176CrossRefPubMedGoogle Scholar
  15. Dufosse L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–321Google Scholar
  16. Dufosse L (2009) Pigment, microbial. Appl Microbiol Ind 457–471Google Scholar
  17. Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality. Trends Food Sci Technol 16(9):389–406CrossRefGoogle Scholar
  18. Durán N, Teixeira MFS, Conti RD, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66CrossRefPubMedGoogle Scholar
  19. European Commission (2000) Opinion of the Scientific Committee on food on beta-carotene from Blakeslea trispora (SCF/CS/ADD/COL), pp. 158Google Scholar
  20. Fabre CE, Santerre AL, Loret MO, Baberian R, Paresllerin A, Goma G, Blanc PJ (1993) Production and food applications of the red pigments of Monascus ruber. J Food Sci 58:1099–1110CrossRefGoogle Scholar
  21. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate penicillia and their mycotoxins. Stud Mycol 49:1–174Google Scholar
  22. Frisvad JC, Yilmaz N, Thrane U, Rasmussen KB, Houbraken J (2013) Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS One 8(12):84102CrossRefGoogle Scholar
  23. Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99CrossRefGoogle Scholar
  24. Gribanovski-Sassu O, Foppen FH (1967) The carotenoids of the fungus Epicoccum nigrum link. Phytochemistry 6:907–909CrossRefGoogle Scholar
  25. Gunasekaran S, Poorniammal R (2008) Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr J Biotechnol 7:1894–1898CrossRefGoogle Scholar
  26. Hajjaj H, Blanc PJ, Goma G, Francois J (1998) Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extracellular metabolites in filamentous fungi. FEMS Microbiol Lett 164:195–200CrossRefGoogle Scholar
  27. Hamano PS, Kilikian BV (2006) Production of red pigments by Monascus ruber in culture media containing corn steep liquor. Braz J Chem Eng 23:443–449CrossRefGoogle Scholar
  28. Hinsch EM, Chen HL, Weber G, Robinson SC (2015) Colorfastness of extracted wood-staining fungal pigments on fabrics: a new potential of textile dyes. J Textile Apparel Technol Manag 9:1–11Google Scholar
  29. Hobson DK, Wales DS (1998) Green dyes. J Stud Dyn Change 114:42–44Google Scholar
  30. Huang H, Feng X, Xiao Z, Liu L, Li H, Ma L, Lu Y, Ju J, She Z, Lin Y (2011) Azaphilones and p-terphenyls from the mangrove endophytic fungus Penicillium chermesinum (ZH4-E2) isolated from the South China Sea. J Nat Prod 74:997–1002CrossRefGoogle Scholar
  31. Jones JD, Hohn TM, Leathers TD (2004) Genetically modified strains of Fusarium sporotrichioides for production of lycopene and β-carotene. Society of Industrial Microbiol Annual Meeting, San Diego, USAGoogle Scholar
  32. Khiabani MS, Esfahani ZH, Azizi MH, Sahari MA (2011) Effective factors on stimulate and stability of synthesised carotenoid by Neurospora intermedia. Nutr Food Sci 41:89–95CrossRefGoogle Scholar
  33. Kim CH, Kim SW, Hong SI (1999) An integrated fermentation separation process for the production of red pigment by Serratia sp. KH-95. Process Biochem 35:485–490CrossRefGoogle Scholar
  34. Kogl F, Van Wessem GC (1944) Analysis concerning pigments of fungi XIV. Concerning oosporein, the pigment of Oospora colorans van Beyma. Recl Trav Chim Pays Bas Bel 63:5–24CrossRefGoogle Scholar
  35. Kumar A, Verma U, Sharma U (2012) Antibacterial activity Monascus purpureus (red pigment) isolated from rice malt. Asian J Biol Life Sci 1:252–255Google Scholar
  36. Lale GJ, Gadre RV (2016) Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express 6:1–11CrossRefGoogle Scholar
  37. Lampila LE, Wallen SE, Bullerman LB (1985) A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia 90:65–80CrossRefGoogle Scholar
  38. Lauro GJ (1991) A primer on natural colors. Cereal Foods World 36:949–953Google Scholar
  39. Li F, Xue F, Yu X (2017) GC-MS, FTIR and Raman analysis of antioxidant components of red pigments from Stemphylium lycopersici. Curr Microbiol 74:532–539CrossRefGoogle Scholar
  40. Liu R, Lu Y, Wu T, Pan Y (2008) Simultaneous isolation and purification of mollugin and two anthraquinones from Rubia cordifolia by HSCCC. Chromatographia 68:95–99CrossRefGoogle Scholar
  41. Liu Q, Xie N, He Y, Wang L, Shao Y, Chen F (2014) MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Appl Microbiol Biotechnol 98:285–296CrossRefGoogle Scholar
  42. Lopes FC, Tichota DM, Pereira JQ, Segalin J, de Oliveira RA, Brandelli A (2013) Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl Biochem Biotechnol 171:616–625CrossRefGoogle Scholar
  43. Lucas EMF, Monteirode Castro MC, Takashi JA (2007) Antimicrobial properties of sclerotiorin, isochromophilone VI and pencolide, metabolites from a Brazalian Cerrado isolate of Penicillium sclerotiorum van Beyma. Braz J Microbiol 38:785–789CrossRefGoogle Scholar
  44. Luo Z, Li Y, Mousa J, Bruner S, Zhang Y, Pei Y, Keyhani NO (2015) Bbmsn2 acts as a pH-dependent negative regulator of secondary metabolite production in the entomopathogenic fungus Beauveria bassiana. Environ Microbiol 17:1189–1202CrossRefGoogle Scholar
  45. Luque EM, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez RJ, Ruger-Herreros C, Tagua VG, Corrochano LM (2012) A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS One 7:33658CrossRefGoogle Scholar
  46. Mao BZ, Huang C, Yang GM, Chen YZ, Chen SY (2010) Separation and determination of bioactivity of oosporein from Chaetomium cupreum. Afr J Biotechnol 9:5955–5961Google Scholar
  47. Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238CrossRefGoogle Scholar
  48. Mapari SAS, Meyer AS, Thrane U (2006) Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J Agric Food Chem 54:7027–7035CrossRefGoogle Scholar
  49. Mapari SAS, Meyer AS, Thrane U (2008) Evaluation of Epicoccum nigrum for growth, morphology and production of natural colorants in liquid media and on a solid rice medium. Biotechnol Lett 30:2183–2190CrossRefGoogle Scholar
  50. Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Factories 8:24CrossRefGoogle Scholar
  51. Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants. Trends Biotechnol 28:300–307CrossRefPubMedPubMedCentralGoogle Scholar
  52. Margalith P (1992) Enhancement of carotenoids synthesis by fungal metabolites. Appl Microbiol Biotechnol 38:664–666Google Scholar
  53. Martinkova L, Juzlova P, Vesely D (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616CrossRefGoogle Scholar
  54. Mehrabian S, Majd A, Majd I (2000) Antimicrobial effects of three plants (Rubia tinctorum, Carthamus tinctorius and Juglans regia) on some airborne microorganisms. Aerobiologia 16:455–458CrossRefGoogle Scholar
  55. Mendentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47:935–959CrossRefGoogle Scholar
  56. Mendez A, Perez C, Montaez JC, Martinez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B (Biomed Biotechnol) 12:961–968CrossRefGoogle Scholar
  57. Miao FP, Li XD, Liu XH, Cichewicz RH, Ji NY (2012) Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar Drugs 10:131–139CrossRefPubMedPubMedCentralGoogle Scholar
  58. Micetich RG, Macdonald JC (1965) Biosynthesis of neoaspergillic and neohydroxyaspergillic acids. J Biol Chem 240:1692–1695PubMedPubMedCentralGoogle Scholar
  59. Moharram AM, Eman MM, Ismail MA (2012) Chemical profile of Monascus ruber strains. Food Technol Biotechnol 50:490–499Google Scholar
  60. Mostafa ME, Abbady MS (2014) Secondary metabolite and bioactivity of the Monascus pigments: review articles. Global J Biotechnol Biochem 9:1–13Google Scholar
  61. Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a velvet protein, vell. Appl Environ Microbiol 76:2345–2352CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nagaoka T, Nakata K, Kouno K (2004) Antifungal activity of oosporein from an antagonistic fungus against Phytophthora infestans. Z Naturforsch C 59:302–304CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nagia FA, El-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes Pigments 75:550–555CrossRefGoogle Scholar
  64. Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pangestuti R, Kim SK (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3:2255–2266CrossRefGoogle Scholar
  66. Pisareva E, Savov V, Kujumdzieva V (2005) Pigments and citrinin biosynthesis by fungi belonging to genus Monascus. Z Naturforsch C 60:116–120CrossRefPubMedPubMedCentralGoogle Scholar
  67. Poorniammal R, Parthiban M, Gunasekaran S, Murugesan R, Thilagavathy R (2013) Natural dye production from Thermomyces sp. fungi for textile application. Indian J Fiber Text Res 38:276–279Google Scholar
  68. Pradeep FS, Pradeep BV (2013) Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Int J Pharm Pharm Sci 5:526–535Google Scholar
  69. Premalatha B, Pradeep FS, Pradeep BV, Palaniswamy M (2012) Production and characterization of naphthoquinone pigment from Fusarium moniliforme MTCC6985. World J Pharm Res 1:1126–1142Google Scholar
  70. Radzio R, Kück U (1997) Synthesis of biotechnologically relevant heterologous proteins in filamentous fungi. Process Biochem 32:529–539CrossRefGoogle Scholar
  71. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2018a) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research. Springer, Switzerland. Scholar
  72. Rana KL, Kour D, Yadav AN (2018b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30Google Scholar
  73. Rasmussen RR, Rasmussen PH, Larsen TO, Bladt TT, Binderup ML (2011) Food Chem Toxicol 49:31CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ray AC, Eakin RE (1975) Studies on the biosynthesis of aspergillin by Aspergillus niger. Appl Microbiol 30:909–915PubMedPubMedCentralGoogle Scholar
  75. Sakaki H, Nakanishi T, Satonaka KY, Miki W, Fujita T, Komemushi S (2000) Properties of a high-torularhodin mutant of Rhodotorula glutinis cultivated under oxidative stress. J Biosci Bioeng 89:203–205CrossRefPubMedPubMedCentralGoogle Scholar
  76. Santos MA, Mateos L, Stahmann KP, Revuelta JL (2005) Insertional mutagenesis in the vitamin B2 producer fungus Ashbya gossypii. In: Barredo JL (ed) Methods in biotechnology: microbial processes and products, vol 18. Humana Press, Totowa, pp 283–300CrossRefGoogle Scholar
  77. Schuster A, Schmoll M (2012) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799CrossRefGoogle Scholar
  78. Sewekow U (1988) Natural dyes—an alternative to synthetic dyes. Melliand Textilber 69:145–148Google Scholar
  79. Seyedin A, Yazdian F, Hatamian ZA, Rasekh B, Mir DM (2015) Natural pigment production by Monascus purpureus: improving the yield in a bioreactor based on statistical analysis. Appl Food Biotechnol 2:23–30Google Scholar
  80. Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigments extraction from fungus for textile dyeing. Indian J Fiber Text Res 37:68–73Google Scholar
  81. Shu YZ, Ye Q, Li H, Kadow KF, Hussain RA, Huang S, Gustavson DR, Lowe SE, Chang LP (1997) Orevactaene, a novel binding inhibitor of HIV-1 rev protein to Rev Response Element (RRE) from Epicoccum nigrum WC47880. Bioorg Med Chem Lett 7:2295–2298CrossRefGoogle Scholar
  82. Singgih M, Andriatna W, Damayanti S, Priatni S (2005) Carotenogenesis study of Neurospora intermedia N-1 in liquid. J Chem Pharm Res 7:842–847Google Scholar
  83. Smith H, Doyle S, Murphy R (2015) Filamentous fungi as a source of natural antioxidants. Food Chem 185:389–397CrossRefPubMedGoogle Scholar
  84. Soptica F, Bahrim G (2005) Influence of light upon flavonoid yields in Epicoccum nigrum solid state fermentation. Rom Biotechnol Lett 10:2387–2394Google Scholar
  85. Souza PN, Grigoletto TL, de Moraes LA, Abreu LM, Guimaraes LH, Santos C, Galvao LR, Cardoso PG (2016) Production and chemical characterization of pigments in filamentous fungi. Microbiology 162:12–22CrossRefPubMedGoogle Scholar
  86. Srianta I, Ristiarini S, NugerahaniI SSK, Zhang BB, Xu GR, Blanc PJ (2014) Recent research and development of Monascus fermentation products. Int Food Res J 21:1–12Google Scholar
  87. Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida fomata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516CrossRefPubMedGoogle Scholar
  88. Sudha, Gupta C, Aggarwal S (2014) Novel bio-colorants for textile application from fungi. J Textile Assoc 74(5): 282–287Google Scholar
  89. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Research perspectives. Springer-Verlag, New Delhi, pp 117–143. Scholar
  90. Sun S, Zhang X, Sun S, Zhu H (2016) Production of natural melanin by Auricularia auricula and study on its molecular structure. Food Chem 190:801–817CrossRefPubMedGoogle Scholar
  91. Sweeny JG, Estrda-Valdes MC, Iacobucci GA, Sato H, Sakamura S (1981) Photoprotection of the red pigments of Monascus anka in aqueous media by 1,4,6-trihydroxynaphthalene. J Agric Food Chem 29:1189–1193CrossRefGoogle Scholar
  92. Takahashi JA, Carvalho SA (2010) Nutritional potential of biomass metabolites from filamentous fungi. Curr Res Edu Topics Appl Microbiol Microbial Biotechnol 1126–1135Google Scholar
  93. Teixeira MFS, Martins MS, Da Silva J, Kirsch LS, Fernandes OCC, Carneiro ALB, De Conti R, Duran N (2012) Amazonian biodiversity: pigments from Aspergillus and Penicillium – characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol Pharm 6:300–311Google Scholar
  94. Torres FAE, Zaccarim BR, de Lencastre NLC, Jozala AF, Dos Santos CA, Teixeira MFS, Santos-Ebinuma VC (2016) Natural colorants from filamentous fungi. Appl Microbiol Biotechnol 100(6):2511–2521CrossRefPubMedGoogle Scholar
  95. Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2014) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678CrossRefPubMedPubMedCentralGoogle Scholar
  96. Unagul P, Wongsa P, Kittakoop P, Intamas S, Srikitikulchai P, Tanticharoen M (2005) Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869. J Ind Microbiol Biotechnol 32:135–140CrossRefPubMedGoogle Scholar
  97. Velmurugan P, Chae JC, Lakshmanaperumalsamy P, Yun BS, Lee KJ, Oh BT (2009) Assessment of the dyeing properties of pigments from five fungi and anti-bacterial activity of dyed cotton fabric and leather. Color Technol 125:334–341CrossRefGoogle Scholar
  98. Velmurugan P, Kamala Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Natural pigment extraction from five filamentous fungi for industrial application and dyeing of leather. Carbohydr Polym 79:262–268CrossRefGoogle Scholar
  99. Vendruscolo F, Muler BL, Moritz DE, De Oliveira D, Smidell G, Ninon JL (2013) Thermal stability of natural pigments produced by Monascus ruber in submerged fermentation. Biocatal Agric Biotechnol 2:278–284CrossRefGoogle Scholar
  100. Venil CK, Lakshmanaperumalsamy P (2009) An insightful overview on microbial pigment, prodigiosin. Electron J Biol 5:49–61Google Scholar
  101. Wang TH, Lin TF (2007) Monascus rice products. Adv Food Nutr Res 53:123–159CrossRefPubMedGoogle Scholar
  102. Wang JJ, Lee CL, Pan TM (2004) Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. J Agric Food Chem 52:6977–6982CrossRefPubMedGoogle Scholar
  103. Weber G, Chen HL, Hinsch E, Freitasa S, Robinson S (2014) Pigments extracted from the wood-staining fungi Chlorociboria aeruginosa, Scytalidium cuboideum, and S. ganodermophthorum show potential for use as textile dyes. Color Technol 130:445–452CrossRefGoogle Scholar
  104. Xu MJ, Yang ZL, Liang ZZ, Zhou SN (2009) Construction of a Monascus purpureus mutant showing lower citrinin and higher production by replacement of ctnA with pks1 without using vector and resistance gene. J Agric Food Chem 57:9764–9768CrossRefPubMedGoogle Scholar
  105. Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:1–5Google Scholar
  106. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13CrossRefGoogle Scholar
  107. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. Scholar
  108. Yilmaz N, Houbraken J, Hoekstra ES, Frisvad JC, Visagie CM (2012) Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia 29:39–54CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zare R, Gams W (2001) A revision of verticillum section prostrata, IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73:1–50Google Scholar
  110. Zhang YQ, Brock M, Keller NP (2004) Connection of propioyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. Genetics 168:785–794CrossRefPubMedPubMedCentralGoogle Scholar
  111. Zheng L, Cai Y, Zhou L, Huang P, Ren X, Zuo A (2017) Benzoquinone from Fusarium pigment inhibits the proliferation of estrogen receptor-positive MCF-7 cells through the NF-κB pathway via estrogen receptor signaling. Int J Mol Med 39:39–46CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashok Kumar
    • 1
  • Srishti Prajapati
    • 1
  • Nikhil
    • 1
  • Smriti Nandan
    • 1
  • Trisha Guha Neogi
    • 1
  1. 1.Department of Genetics and Plant Breeding (Plant Biotechnology)Rajiv Gandhi South Campus, Banaras Hindu UniversityMirzapurIndia

Personalised recommendations