Autonomous Segmentation and Modeling of Brain Pathological Findings Based on Iterative Segmentation from MR Images

  • Jan KubicekEmail author
  • Alice Krestanova
  • Tereza Muchova
  • David Oczka
  • Marek Penhaker
  • Martin Cerny
  • Martin Augustynek
  • Ondrej Krejcar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11432)


This paper deals with the design of an automated algorithm for segmentation and modeling pathological areas of MR brain imaging data. For segmentation purposes was used namely active contouring method in MATLAB. The proposed algorithm was tested on a dataset of 21 MR frames.

This work also deals with the comparison efficiency of preprocessing image to improve segmentation results and subsequently testing and verifying the proposed algorithm for real image data.


Brain Pathological area of the brain Magnetic resonance Detection Image processing Active contours MATLAB 



The work and the contributions were supported by the project SV4508811/2101Biomedical Engineering Systems XIV’. This study was also supported by the research project The Czech Science Foundation (GACR) 2017 No. 17-03037S Investment evaluation of medical device development run at the Faculty of Informatics and Management, University of Hradec Kralove, Czech Republic. This study was supported by the research project The Czech Science Foundation (TACR) ETA No. TL01000302 Medical Devices development as an effective investment for public and private entities.


  1. 1.
    Stříteský, J.: Patologie: [učebnice pro zdravotnické školy a bakalářské studium]. Epava, Olomouc (2001)Google Scholar
  2. 2.
    Ferda, J., Mírka, H., Baxa, J., Malán, A.: Základy zobrazovacích metod. Galén, Praha (2015)Google Scholar
  3. 3.
    Seidl, Z., Vaněčková, M.: Magnetická rezonance hlavy, mozku a páteře. Grada, Praha (2007)Google Scholar
  4. 4.
    Meningeom. Neurologienet. Accessed 20 Nov 2017
  5. 5.
    Heřman, M.: Radiologické zobrazování mozku: Magnetická rezonance (MR). E-learningová podpora mezioborové integrace výuky tématu vědomí na UP Olomouc, Olomouc (2012)Google Scholar
  6. 6.
    Subudhi, A., Rajendra, A., Manasa, D., Subhransu, J., Sukanta, S.: Automated approach for detection of ischemic stroke Delaunay Triangulation in brain MRI images. Comput. Biol. Med. 103, 116–129 (2018)CrossRefGoogle Scholar
  7. 7.
    Cerrolaza, J.J., Villanueva, A., Cabeza, R.: Hierarchical statistical shape models of multiobject anatomical structures: application to brain MRI. IEEE Trans. Med. Imaging 31(3), 713–724 (2012)CrossRefGoogle Scholar
  8. 8.
    Benson, C.C., Lajish, V.L., Rajamani, K.: Brain tumor extraction from MRI brain images using marker based watershed algorithm. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 318–323. IEEE, Kochi (2015)CrossRefGoogle Scholar
  9. 9.
    Despotovic, I., Goossens, B., Philips, W.: Segmentation of the human brain: challenges, methods, and applications. Comput. Math. Methods Med. 2015, 1–23 (2015)CrossRefGoogle Scholar
  10. 10.
    Bernal, J., et al.: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif. Intell. Med. pii, S0933–3657(16)30520–6 (2018)Google Scholar
  11. 11.
    Naveen, A., Velmurugan, T.: Identification of calcification in MRI brain images by k-Means algorithm. Indian J. Sci. Technol. 8(29) (2015).
  12. 12.
    Bal, A.., Banerjee, M., Chakrabarti, A., Sharma, P.: MRI brain tumor segmentation and analysis using rough-fuzzy C-Means and shape based properties. J. King Saud Univ. Comput. Inf. 30(4) (2018)Google Scholar
  13. 13.
    Griffanti, L., Zamboni, G., Khan, A., et al.: BIANCA (Brain Intensity Abnormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities. NeuroImage 141, 191–205 (2016)CrossRefGoogle Scholar
  14. 14.
    Jipkate, B.R., Gohokar, V.V.: A comparative analysis of fuzzy C-Means clustering and K means clustering algorithms. Int. J. Comput. Eng. Res. 2, 737–739 (2012)Google Scholar
  15. 15.
    Kotte, S., Pullakura, R.K., Injeti, S.K.: Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization. Measurement 130, 340–361 (2018)CrossRefGoogle Scholar
  16. 16.
    Vicianová, V.: Extrakce objektů z medicínských obrazů na základě metody aktivních kontur. Bakalářská práce. VŠB – Technická univerzita Ostrava. Ostrava (2017)Google Scholar
  17. 17.
    Milde, D.: Korelace. Univerzita Palackého v Olomouci, Olomouc (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jan Kubicek
    • 1
    Email author
  • Alice Krestanova
    • 1
  • Tereza Muchova
    • 1
  • David Oczka
    • 1
  • Marek Penhaker
    • 1
  • Martin Cerny
    • 1
  • Martin Augustynek
    • 1
  • Ondrej Krejcar
    • 2
  1. 1.FEECSVSB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Faculty of Informatics and Management, Center for Basic and Applied ResearchUniversity of Hradec KraloveHradec KraloveCzech Republic

Personalised recommendations