Advertisement

Detection of Rare Elements in Investigation of Medical Problems

  • Piotr KulczyckiEmail author
  • Damian Kruszewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11431)

Abstract

The task of detecting atypical (rare) elements is of major significance in the field of medical problems and its conditions seem to be specific in practice. Such elements, mostly concerned with pathology, are very different in nature and their set is often small in size with a low level of representativeness. A frequency approach was applied in the presented research, which, in conjunction with nonparametric methods, enabled the detection of atypical elements – in the case of distributions with many modes – also located between them, and not only lying on the peripheries of the population. Within the framework of the procedure investigated here, the database is artificially extended, which significantly improves the quality of results. The presented method has been successfully used for two medical problems: biochemical blood tests and the influence of hemoglobin levels on mortality.

Keywords

Detection Atypical element Rare element Frequency approach Nonparametric methods Medical applications 

Notes

Acknowledgments

The work was supported in parts by the Systems Research Institute of the Polish Academy of Sciences in Warsaw, and the Faculty of Physics and Applied Computer Science of the AGH University of Science and Technology in Cracow, Poland.

References

  1. 1.
    Aggarwal, C.C.: Outlier Analysis. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-6396-2CrossRefzbMATHGoogle Scholar
  2. 2.
    Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, New York (1994)zbMATHGoogle Scholar
  3. 3.
    Canaan, C., Garai, M.S., Daya, M.: Popular sorting algorithms. World Appl. Program. 1, 62–71 (2011)Google Scholar
  4. 4.
    Gentle, J.E.: Random Number Generation and Monte Carlo Methods. Springer, New York (2003).  https://doi.org/10.1007/b97336CrossRefzbMATHGoogle Scholar
  5. 5.
    Hosmer, D.W., Lemeshow, S.: Applied Survival Analysis: Regression Modelling of Time to Event Data. Wiley, New York (1999)zbMATHGoogle Scholar
  6. 6.
    Kulczycki, P.: Wykrywanie uszkodzeń w systemach zautomatyzowanych metodami statystycznymi. Alfa, Warsaw (1998)Google Scholar
  7. 7.
    Kulczycki, P.: Estymatory jądrowe w analizie systemowej. WNT, Warsaw (2005)Google Scholar
  8. 8.
    Kulczycki, P., Charytanowicz, M.: An algorithm for conditional multidimensional parameter identification with asymmetric and correlated losses of under- and overestimations. J. Stat. Comput. Simul. 86, 1032–1055 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kulczycki, P., Charytanowicz, M., Kowalski, P.A., Łukasik, S.: The complete gradient clustering algorithm: properties in practical applications. J. Appl. Stat. 39, 1211–1224 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kulczycki, P., Kowalski, P.A.: A complete algorithm for the reduction of pattern data in the classification of interval information. Int. J. Comput. Methods 13, Paper ID: 1650018 (2016)Google Scholar
  11. 11.
    Kulczycki, P., Kruszewski, D.: Identification of atypical elements by transforming task to supervised form with fuzzy and intuitionistic fuzzy evaluations. Appl. Comput. 60, 623–633 (2017)Google Scholar
  12. 12.
    Kulczycki, P., Kruszewski, D.: Detection of atypical elements with fuzzy and intuitionistic fuzzy evaluations. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds.) KKA 2017. AISC, vol. 577, pp. 774–786. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60699-6_75CrossRefGoogle Scholar
  13. 13.
    Kulczycki, P., Kruszewski, D.: Detection of atypical elements by transforming task to supervised form. In: Shankar, B.U., Ghosh, K., Mandal, D.P., Ray, S.S., Zhang, D., Pal, S.K. (eds.) PReMI 2017. LNCS, vol. 10597, pp. 458–466. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69900-4_58CrossRefGoogle Scholar
  14. 14.
    Kulczycki, P., Łukasik, S.: An algorithm for reducing dimension and size of sample for data exploration procedures. Int. J. Appl. Math. Comput. Sci. 24, 133–149 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kulczycki, P., Prochot, C.: Identyfikacja stanów nietypowych za pomocą estymatorów jądrowych. In: Bubnicki, Z., Hryniewicz, O., Kulikowski, R. (eds.) Metody i techniki analizy informacji i wspomagania decyzji, pp. 57–62. EXIT, Warsaw (2002)Google Scholar
  16. 16.
    National Health and Nutrition Examination Survey. http://www.cdc.gov/nchs/nhanes.htm/. Accessed 10 May 2016
  17. 17.
    National Cancer Institute. http://ctep.cancer.gov/. Accessed 10 May 2016
  18. 18.
    Parrish, R.: Comparison of quantile estimators in normal sampling. Biometrics 46, 247–257 (1990)CrossRefGoogle Scholar
  19. 19.
    Piros, P., et al.: An overview of myocardial infarction registries and results from the Hungarian myocardial infarction registry. In: Fujita, H., Selamat, A., Omatu, S. (eds.) New Trends in Intelligent Software Methodologies, Tools and Techniques, pp. 312–320. IOS Press, Amsterdam (2017)Google Scholar
  20. 20.
    Wand, M., Jones, M.: Kernel Smoothing. Chapman and Hall, London (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Systems Research Institute, Centre of Information Technology for Data Analysis MethodsPolish Academy of SciencesWarsawPoland
  2. 2.Faculty of Physics and Applied Computer Science, Division for Information Technology and Systems ResearchAGH University of Science and TechnologyKrakówPoland

Personalised recommendations