Advertisement

Histone and DNA Methylome in Neurodegenerative, Neuropsychiatric and Neurodevelopmental Disorders

  • Harsha Rani
  • Vijayalakshmi MahadevanEmail author
Chapter
Part of the RNA Technologies book series (RNATECHN)

Abstract

Genome-environment interaction and epigenome plasticity significantly influence the pathogenesis of neurodegenerative and neuropsychiatric disorders. Recent advancements in the field to study genome wide chromatin modifications provide a comprehensive view of the epigenome. Dysregulation of epigenetic machinery has emerged as a major genetic driver of neuro developmental and neuro degenerative disorders, intellectual disabilities and autism spectrum disorders. Emerging evidences point to the involvement of the epigenome in the onset and progression of Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. This review focusses on the changes in epigenetic machinery, specifically on the histone methylation and DNA methylation patterns during the onset and progression of neurodegenerative diseases and neuropsychiatric disorders. The power of epigenetic inhibitors to function as potential diagnostic and therapeutic markers is also discussed.

Keywords

Epigenome Neuropsychiatry Brain plasticity Epigenetic inhibitors Schizophrenia Huntington’s disease Alzheimer’s disease Parkinson’s disease Obsessive compulsive disorder Bipolar disorder 

References

  1. Abmayr SM, Workman JL (2012) Holding on through DNA replication: histone modification or modifier? Cell 150:875–877PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agbemenyah HY, Agis-Balboa RC, Burkhardt S et al (2014) Insulin growth factor binding protein 7 is a novel target to treat dementia. Neurobiol Dis 62:135–143PubMedCrossRefPubMedCentralGoogle Scholar
  3. Agger K, Cloos PAC, Christensen J et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734CrossRefPubMedGoogle Scholar
  4. Akbarian S (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258CrossRefGoogle Scholar
  5. Akbarian S, Ruehl MG, Bliven E et al (2005) Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 62:829PubMedCrossRefPubMedCentralGoogle Scholar
  6. Akbarian S, Beeri MS, Haroutunian V (2013) Epigenetic determinants of healthy and diseased brain aging and cognition. JAMA Neurol 70:711–718PubMedCrossRefGoogle Scholar
  7. Alcala R, Creus-Muncunill J, Azkona G et al (2014) B10 nuclear lamina is differentially altered in huntington’s disease brain regions. J Neurol Neurosurg Psychiatry 85:A12–A12CrossRefGoogle Scholar
  8. Ambrosio S, Majello B (2018) Targeting histone demethylase LSD1/KDM1a in neurodegenerative diseases. J Exp Neurosci 12:1179069518765743PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baba A, Ohtake F, Okuno Y et al (2011) PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat Cell Biol 13:668–675PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bai G, Cheung I, Shulha HP et al (2014) Epigenetic dysregulation of hairy and enhancer of split 4 (HES4) is associated with striatal degeneration in postmortem Huntington brains. Hum Mol Genet 24:1441–1456PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barrachina M, Ferrer I (2009) DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 68:880–891PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bedford DC, Brindle PK (2012) Is histone acetylation the most important physiological function for CBP and p300? Aging 4:247–255PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berthier A, Jiménez-Sáinz J, Pulido R (2013) PINK1 regulates histone H3 trimethylation and gene expression by interaction with the polycomb protein EED/WAIT1. Proc Natl Acad Sci U S A 110:14729–14734PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bertram L, McQueen MB, Mullin K et al (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23PubMedCrossRefPubMedCentralGoogle Scholar
  15. Blanch M, Mosquera JL, Ansoleaga B et al (2016) Altered mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease. Am J Pathol 186:385–397PubMedCrossRefPubMedCentralGoogle Scholar
  16. Borun TW, Pearson D, Paik WK (1972) Studies of histone methylation during the HeLa S-3 cell cycle. J Biol Chem 247:4288–4298PubMedPubMedCentralGoogle Scholar
  17. Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16:551–563PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bozorgmehr A, Ghadirivasfi M, Shahsavand Ananloo E (2017) Obsessive-compulsive disorder, which genes? Which functions? Which pathways? An integrated holistic view regarding OCD and its complex genetic etiology. J Neurogenet 31:153–160PubMedCrossRefPubMedCentralGoogle Scholar
  19. Braak H, Braak E (1991) Alzheimer’s disease affects limbic nuclei of the thalamus. Acta Neuropathol 81:261–268PubMedCrossRefPubMedCentralGoogle Scholar
  20. Braak H, Del Tredici K, Bratzke H et al (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249(Suppl 3):III/1–III/5CrossRefGoogle Scholar
  21. Buckley NJ, Johnson R, Zuccato C et al (2010) The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol Dis 39:28–39PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cappi C, Brentani H, Lima L et al (2016a) Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways. Transl Psychiatry 6:e764–e764PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cao J, Yan Q (2012) Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2:1–9CrossRefGoogle Scholar
  24. Cappi C, Diniz JB, Requena GL et al (2016b) Epigenetic evidence for involvement of the oxytocin receptor gene in obsessive-compulsive disorder. BMC Neurosci 17:79PubMedPubMedCentralCrossRefGoogle Scholar
  25. Carlsson A, Lindqvist M (2009) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144CrossRefGoogle Scholar
  26. Celarain N, Sánchez-Ruiz de Gordoa J, Zelaya MV et al (2016) TREM2 upregulation correlates with 5-hydroxymethycytosine enrichment in Alzheimer’s disease hippocampus. Clin Epigenetics 8:37PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 is a histone arginine demethylase. Science 318:444–447PubMedCrossRefGoogle Scholar
  28. Chase KA, Gavin DP, Guidotti A, Sharma RP (2013) Histone methylation at H3K9: evidence for a restrictive epigenome in schizophrenia. Schizophr Res 149:15–20PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen K-L, Wang SS-S, Yang Y-Y et al (2009) The epigenetic effects of amyloid-beta(1-40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 378:57–61CrossRefGoogle Scholar
  30. Chen M, Zhu N, Liu X et al (2015) JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes Dev 29:2123–2139PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chouliaras L, Mastroeni D, Delvaux E et al (2013) Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging 34:2091–2099PubMedPubMedCentralCrossRefGoogle Scholar
  32. Christopher MA, Myrick DA, Barwick BG et al (2017) LSD1 protects against hippocampal and cortical neurodegeneration. Nat Commun 8:805PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70:271–288PubMedPubMedCentralGoogle Scholar
  34. Coppieters N, Dieriks BV, Lill C et al (2014) Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol Aging 35:1334–1344CrossRefGoogle Scholar
  35. Cruceanu C, Alda M, Nagy C et al (2013) H3K4 tri-methylation in synapsin genes leads to different expression patterns in bipolar disorder and major depression. Int J Neuropsychopharmacol 16:289–299PubMedCrossRefPubMedCentralGoogle Scholar
  36. Cuthbert GL, Daujat S, Snowden AW et al (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553PubMedCrossRefPubMedCentralGoogle Scholar
  37. Daujat S, Bauer U-M, Shah V et al (2002) Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12:2090–2097PubMedCrossRefGoogle Scholar
  38. de Boni L, Riedel L, Schmitt I et al (2015) DNA methylation levels of α-synuclein intron 1 in the aging brain. Neurobiol Aging 36:3334.e7–3334.e11CrossRefGoogle Scholar
  39. De Jager PL, Srivastava G, Lunnon K et al (2014) Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17:1156–1163PubMedPubMedCentralCrossRefGoogle Scholar
  40. De Rubeis S, He X, Goldberg AP et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–215PubMedPubMedCentralCrossRefGoogle Scholar
  41. De Souza RAG, Islam SA, McEwen LM et al (2016) DNA methylation profiling in human Huntington’s disease brain. Hum Mol Genet 25:2013–2030PubMedCrossRefPubMedCentralGoogle Scholar
  42. Desplats P, Spencer B, Coffee E et al (2011) Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286:9031–9037PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dong X, Tsuji J, Labadorf A et al (2015) The role of H3K4me3 in transcriptional regulation is altered in Huntington’s disease. PLoS One 10:e0144398PubMedPubMedCentralCrossRefGoogle Scholar
  44. Eilbracht J, Reichenzeller M, Hergt M et al (2004) NO66, a highly conserved dual location protein in the nucleolus and in a special type of synchronously replicating chromatin. Mol Biol Cell 15:1816–1832PubMedPubMedCentralCrossRefGoogle Scholar
  45. Feng Q, Wang H, Ng HH et al (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ferrante RJ (2004) Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. J Neurosci 24:10335–10342PubMedPubMedCentralCrossRefGoogle Scholar
  47. Frescas D, Guardavaccaro D, Kuchay SM et al (2008) KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle 7:3539–3547PubMedPubMedCentralCrossRefGoogle Scholar
  48. Forman MS, Trojanowski JQ, Lee VM-Y (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10:1055–1063PubMedCrossRefPubMedCentralGoogle Scholar
  49. Funahashi Y, Yoshino Y, Yamazaki K et al (2017) DNA methylation changes at SNCA intron 1 in patients with dementia with Lewy bodies. Psychiatry Clin Neurosci 71:28–35PubMedCrossRefPubMedCentralGoogle Scholar
  50. Fuso A, Nicolia V, Cavallaro RA et al (2008) B-vitamin deprivation induces hyperhomocysteinemia and brain Sadenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci 37:731–746PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gao J, Cahill CM, Huang X et al (2018) S-Adenosyl methionine and transmethylation pathways in neuropsychiatric diseases throughout life. Neurotherapeutics 15:156–175PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gapp K, Woldemichael BT, Bohacek J, Mansuy IM (2014) Epigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience 264:99–111PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gavin DP, Sharma RP (2009) Chromatin from peripheral blood mononuclear cells as biomarkers for epigenetic abnormalities in schizophrenia. Cardiovasc Psychiatry Neurol 2009:409562PubMedPubMedCentralCrossRefGoogle Scholar
  54. Girdhar K, Hoffman GE, Jiang Y et al (2018) Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat Neurosci 21:1126–1136PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gjoneska E, Pfenning AR, Mathys H et al (2015) Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518:365–369PubMedPubMedCentralCrossRefGoogle Scholar
  56. Goula A-V, Stys A, Chan JPK et al (2012) Transcription elongation and tissue-specific somatic CAG instability. PLoS Genet 8:e1003051PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gräff J, Tsai L-H (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14:97–111PubMedCrossRefPubMedCentralGoogle Scholar
  58. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357PubMedPubMedCentralCrossRefGoogle Scholar
  59. Grozeva D, Carss K, Spasic-Boskovic O et al (2014) De novo loss-of-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability. Am J Hum Genet 94:618–624PubMedPubMedCentralCrossRefGoogle Scholar
  60. Guidotti A, Auta J, Davis JM et al (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57:1061–1069CrossRefGoogle Scholar
  61. Hamamoto R, Furukawa Y, Morita M et al (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6:731–740PubMedCrossRefPubMedCentralGoogle Scholar
  62. He J, Kallin EM, Tsukada Y-I, Zhang Y (2008) The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol 15:1169–1175PubMedPubMedCentralCrossRefGoogle Scholar
  63. Heintzman ND, Stuart RK, Hon G et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318PubMedCrossRefGoogle Scholar
  64. Hernández-Ortega K, Garcia-Esparcia P, Gil L et al (2016) Altered machinery of protein synthesis in Alzheimer’s: from the nucleolus to the ribosome. Brain Pathol 26:593–605PubMedCrossRefPubMedCentralGoogle Scholar
  65. Homs A, Codina-SolÁ M, RodrÚguez-Santiago B et al (2016) Genetic and epigenetic methylation defects and implication of the ERMN gene in autism spectrum disorders. Transl Psychiatry 6: e855PubMedPubMedCentralCrossRefGoogle Scholar
  66. Horton JR, Liu X, Gale M et al (2016) Structural basis for KDM5A histone lysine demethylase inhibition by diverse compounds. Cell Chem Biol 23:769–781PubMedPubMedCentralCrossRefGoogle Scholar
  67. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115PubMedPubMedCentralCrossRefGoogle Scholar
  68. Horvath S, Ritz BR (2015) Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging 7:1130–1142PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hottiger MO (2011) ADP-ribosylation of histones by ARTD1: an additional module of the histone code? FEBS Lett 585:1595–1599PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hsia DA, Tepper CG, Pochampalli MR et al (2010) KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proc Natl Acad Sci U S A 107:9671–9676PubMedPubMedCentralCrossRefGoogle Scholar
  71. Huang H-S, Matevossian A, Whittle C et al (2007) Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci 27:11254–11262PubMedCrossRefPubMedCentralGoogle Scholar
  72. Ibrahim HM, Tamminga CA (2011) Schizophrenia: treatment targets beyond monoamine systems. Annu Rev Pharmacol Toxicol 51:189–209PubMedPubMedCentralCrossRefGoogle Scholar
  73. Iwase S, Lan F, Bayliss P et al (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128:1077–1088PubMedCrossRefPubMedCentralGoogle Scholar
  74. Jia H, Morris CD, Williams RM et al (2015) HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A 112:E56–E64PubMedCrossRefPubMedCentralGoogle Scholar
  75. Jiang GL, Huang S (2000) The yin-yang of PR-domain family genes in tumorigenesis. Histol Histopathol 15:109–117PubMedPubMedCentralGoogle Scholar
  76. Jiang Y, Jakovcevski M, Bharadwaj R et al (2010) Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J Neurosci 30:7152–7167PubMedPubMedCentralCrossRefGoogle Scholar
  77. Katoh Y, Katoh M (2007) Comparative integromics on JMJD2A, JMJD2B and JMJD2C: preferential expression of JMJD2C in undifferentiated ES cells. Int J Mol Med 20:269–273PubMedPubMedCentralGoogle Scholar
  78. Kaut O, Schmitt I, Wüllner U (2012) Genome-scale methylation analysis of Parkinson’s disease patients’ brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 13:87–91PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kawahara TLA, Michishita E, Adler AS et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62–74PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kendler KS (2001) Twin studies of psychiatric illness: an update. Arch Gen Psychiatry 58:1005–1014PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kizer KO, Phatnani HP, Shibata Y et al (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25:3305–3316PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871PubMedCrossRefPubMedCentralGoogle Scholar
  83. Krishnan S, Trievel RC (2013) Structural and functional analysis of JMJD2D reveals molecular basis for sitespecific demethylation among JMJD2 demethylases. Structure 21:98–108PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kweon JH, Kim S, Lee SB (2017) The cellular basis of dendrite pathology in neurodegenerative diseases. BMB Rep 50:5–11PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lambert JC, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lattal KM, Wood MA (2013) Epigenetics and persistent memory: implications for reconsolidation and silent extinction beyond the zero. Nat Neurosci 16:124–129PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lee J-H, Skalnik DG (2005) CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 280:41725–41731PubMedCrossRefPubMedCentralGoogle Scholar
  88. Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437:432–435PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lee J, Hong YK, Jeon GS et al (2012) ATRX induction by mutant huntingtin via Cdx2 modulates heterochromatin condensation and pathology in Huntington’s disease. Cell Death Differ 19:1109–1116PubMedPubMedCentralCrossRefGoogle Scholar
  90. Levine ME, Lu AT, Bennett DA, Horvath S (2015) Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging 7:1198–1211PubMedPubMedCentralCrossRefGoogle Scholar
  91. Levkovitz Y, Alpert JE, Brintz CE et al (2012) Effects of S-adenosylmethionine augmentation of serotonin-reuptake inhibitor antidepressants on cognitive symptoms of major depressive disorder. J Affect Disord 136:1174–1178PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324PubMedCrossRefPubMedCentralGoogle Scholar
  93. Li Y, Zhang Y, Li S et al (2015) Genome-wide DNA methylome analysis reveals epigenetically dysregulated non-coding RNAs in human breast cancer. Sci Rep 5:8790PubMedPubMedCentralCrossRefGoogle Scholar
  94. Li N, Dhar SS, Chen T-Y et al (2016) JARID1D is a suppressor and prognostic marker of prostate cancer invasion and metastasis. Cancer Res 76:831–843PubMedPubMedCentralCrossRefGoogle Scholar
  95. Liang WS, Dunckley T, Beach TG et al (2008) Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set. Physiol Genomics 33:240–256PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lim DA, Huang Y-C, Swigut T et al (2009) Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458:529–533PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lin Q, Ding H, Zheng Z et al (2012) Promoter methylation analysis of seven clock genes in Parkinson’s disease. Neurosci Lett 507:147–150PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lithner CU, Lacor PN, Zhao W-Q et al (2013) Disruption of neocortical histone H3 homeostasis by soluble Aβ: implications for Alzheimer’s disease. Neurobiol Aging 34:2081–2090PubMedCrossRefPubMedCentralGoogle Scholar
  99. Liu Y, Chen G, Norton N et al (2009) Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. J Biomed Biotechnol 2009:1–7Google Scholar
  100. Liu L, Kim H, Casta A et al (2014) Hairless is a histone H3K9 demethylase. FASEB J 28:1534–1542PubMedPubMedCentralCrossRefGoogle Scholar
  101. Luger K, Mäder AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260CrossRefGoogle Scholar
  102. Lunnon K, Smith R, Hannon E et al (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat Neurosci 17:1164–1170PubMedPubMedCentralCrossRefGoogle Scholar
  103. Margueron R, Li G, Sarma K et al (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32:503–518PubMedPubMedCentralCrossRefGoogle Scholar
  104. Mastroeni D, McKee A, Grover A et al (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 4:e6617PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mastroeni D, Delvaux E, Nolz J et al (2015) Aberrant intracellular localization of H3k4me3 demonstrates an early epigenetic phenomenon in Alzheimer’s disease. Neurobiol Aging 36:3121–3129PubMedPubMedCentralCrossRefGoogle Scholar
  106. Matrisciano F, Tueting P, Dalal I et al (2013) Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology 68:184–194PubMedCrossRefPubMedCentralGoogle Scholar
  107. McEwen BS (2000) Effects of adverse experiences for brain structure and function. Biol Psychiatry 48:721–731PubMedCrossRefPubMedCentralGoogle Scholar
  108. Mentch SJ, Mehrmohamadi M, Huang L et al (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 22:861–873PubMedPubMedCentralCrossRefGoogle Scholar
  109. Metzger E, Wissmann M, Yin N et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439PubMedCrossRefPubMedCentralGoogle Scholar
  110. Miao F, Natarajan R (2005) Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol 25:4650–4661PubMedPubMedCentralCrossRefGoogle Scholar
  111. Moore K, McKnight AJ, Craig D, O’Neill F (2014) Epigenome-wide association study for Parkinson’s disease. NeuroMolecular Med 16:845–855PubMedCrossRefPubMedCentralGoogle Scholar
  112. Mulder C, Schoonenboom NSM, Jansen EEW et al (2005) The transmethylation cycle in the brain of Alzheimer patients. Neurosci Lett 386:69–71PubMedCrossRefPubMedCentralGoogle Scholar
  113. Narayanan M, Huynh JL, Wang K et al (2014) Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol Syst Biol 10:743PubMedPubMedCentralCrossRefGoogle Scholar
  114. Nativio R, Donahue G, Berson A et al (2018) Publisher correction: dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat Neurosci 21:1018–1018PubMedCrossRefPubMedCentralGoogle Scholar
  115. Ng SS, Yue WW, Oppermann U, Klose RJ (2009) Dynamic protein methylation in chromatin biology. Cell Mol Life Sci 66:407–422PubMedCrossRefGoogle Scholar
  116. Ng CW, Yildirim F, Yap YS et al (2013) Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc Natl Acad Sci U S A 110:2354–2359PubMedPubMedCentralCrossRefGoogle Scholar
  117. Nissen JB, Hansen CS, Starnawska A et al (2016) DNA methylation at the neonatal state and at the time of diagnosis: preliminary support for an association with the estrogen receptor 1, gamma-aminobutyric acid B receptor 1, and myelin oligodendrocyte glycoprotein in female adolescent patients with OCD. Front Psychiatry 7:35PubMedPubMedCentralCrossRefGoogle Scholar
  118. Nuutinen T, Suuronen T, Kyrylenko S et al (2005) Induction of clusterin/apoJ expression by histone deacetylase inhibitors in neural cells. Neurochem Int 47:528–538PubMedCrossRefPubMedCentralGoogle Scholar
  119. O’Connell KS, McGregor NW, Lochner C et al (2018) The genetic architecture of schizophrenia, bipolar disorder, obsessive-compulsive disorder and autism spectrum disorder. Mol Cell Neurosci 88:300–307PubMedCrossRefPubMedCentralGoogle Scholar
  120. Obeid R, Schadt A, Dillmann U et al (2009) Methylation status and neurodegenerative markers in Parkinson disease. Clin Chem 55:1852–1860PubMedCrossRefPubMedCentralGoogle Scholar
  121. Pasini D, Cloos PAC, Walfridsson J et al (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464:306–310PubMedCrossRefPubMedCentralGoogle Scholar
  122. Pathak SS, Maitra S, Chakravarty S, Kumar A (2017) Histone lysine demethylases of JMJD2 or KDM4 family are important epigenetic regulators in reward circuitry in the etiopathology of depression. Neuropsychopharmacology 42:854–863PubMedCrossRefPubMedCentralGoogle Scholar
  123. Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20:662–671PubMedCrossRefPubMedCentralGoogle Scholar
  124. Pedersen MT, Agger K, Laugesen A et al (2014) The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development. Mol Cell Biol 34:1031–1045PubMedPubMedCentralCrossRefGoogle Scholar
  125. Qi HH, Sarkissian M, Hu G-Q et al (2010) Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature 466:503–507PubMedPubMedCentralCrossRefGoogle Scholar
  126. Rao JS, Keleshian VL, Klein S, Rapoport SI (2012) Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry 2:e132–e132PubMedPubMedCentralCrossRefGoogle Scholar
  127. Rea S, Eisenhaber F, O’Carroll D et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599PubMedCrossRefPubMedCentralGoogle Scholar
  128. Ruzicka WB, Subburaju S, Benes FM (2015) Circuit- and diagnosis-specific DNA methylation changes at γ-Aminobutyric acid-related genes in postmortem human hippocampus in schizophrenia and bipolar disorder. JAMA Psychiatry 72:541–551PubMedPubMedCentralCrossRefGoogle Scholar
  129. Ryu H, Lee J, Hagerty SW et al (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc Natl Acad Sci U S A 103:19176–19181PubMedPubMedCentralCrossRefGoogle Scholar
  130. Saeliw T, Tangsuwansri C, Thongkorn S et al (2018) Integrated genome-wide Alu methylation and transcriptome profiling analyses reveal novel epigenetic regulatory networks associated with autism spectrum disorder. Mol Autism 9:27PubMedPubMedCentralCrossRefGoogle Scholar
  131. Saijo K, Winner B, Carson CT et al (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:47–59PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sanchez-Mut JV, Aso E, Panayotis N et al (2013) DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease. Brain 136:3018–3027PubMedPubMedCentralCrossRefGoogle Scholar
  133. Satake W, Nakabayashi Y, Mizuta I et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41:1303–1307PubMedCrossRefPubMedCentralGoogle Scholar
  134. Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70:1033–1053PubMedPubMedCentralCrossRefGoogle Scholar
  135. Seong IS, Woda JM, Song J-J et al (2010) Huntingtin facilitates polycomb repressive complex 2. Hum Mol Genet 19:573–583PubMedCrossRefPubMedCentralGoogle Scholar
  136. Shulha HP, Cheung I, Whittle C et al (2012) Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons. Arch Gen Psychiatry 69:314–324CrossRefPubMedGoogle Scholar
  137. Siegmund KD, Connor CM, Campan M et al (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2:e895PubMedPubMedCentralCrossRefGoogle Scholar
  138. Singh T, Kurki MI, Curtis D et al (2016) Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci 19:571–577PubMedPubMedCentralCrossRefGoogle Scholar
  139. Smith RG, Hannon E, De Jager PL et al (2018) Elevated DNA methylation across a 48-kb region spanning the HOXA gene cluster is associated with Alzheimer’s disease neuropathology. Alzheimers Dement.  https://doi.org/10.1016/j.jalz.2018.01.017 CrossRefGoogle Scholar
  140. Song W, Zsindely N, Faragó A et al (2018) Systematic genetic interaction studies identify histone demethylase Utx as potential target for ameliorating Huntington’s disease. Hum Mol Genet 27:759–759PubMedCrossRefPubMedCentralGoogle Scholar
  141. Stadler F, Kolb G, Rubusch L et al (2005) Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain. J Neurochem 94:324–336PubMedCrossRefPubMedCentralGoogle Scholar
  142. Strahl BD, David Allis C (2000) The language of covalent histone modifications. Nature 403:41–45CrossRefGoogle Scholar
  143. Sugeno N, Jäckel S, Voigt A et al (2016) α-Synuclein enhances histone H3 lysine-9 dimethylation and H3K9me2-dependent transcriptional responses. Sci Rep 6:36328PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sun W, Poschmann J, Cruz-Herrera Del Rosario R et al (2016) Histone acetylome-wide association study of autism spectrum disorder. Cell 167:1385–1397.e11PubMedCrossRefPubMedCentralGoogle Scholar
  145. Takata A, Xu B, Ionita-Laza I et al (2014) Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 82:773–780PubMedPubMedCentralCrossRefGoogle Scholar
  146. Tang B, Seredenina T, Coppola G et al (2011) Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington’s disease. Neurobiol Dis 42:459–467PubMedPubMedCentralCrossRefGoogle Scholar
  147. The Network and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium (2015) Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci 18:199–209PubMedCentralCrossRefGoogle Scholar
  148. Tsukada Y-I, Ishitani T, Nakayama KI (2010) KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev 24:432–437PubMedPubMedCentralCrossRefGoogle Scholar
  149. Urdinguio RG, Sanchez-Mut JV, Esteller M (2009) Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8:1056–1072PubMedCrossRefPubMedCentralGoogle Scholar
  150. Vafai SB, Stock JB (2002) Protein phosphatase 2A methylation: a link between elevated plasma homocysteine and Alzheimer’s disease. FEBS Lett 518:1–4PubMedCrossRefPubMedCentralGoogle Scholar
  151. Vashishtha M, Ng CW, Yildirim F et al (2013) Targeting H3K4 trimethylation in Huntington disease. Proc Natl Acad Sci U S A 110:E3027–E3036PubMedPubMedCentralCrossRefGoogle Scholar
  152. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:365–375PubMedCrossRefPubMedCentralGoogle Scholar
  153. Walker MP, LaFerla FM, Oddo SS, Brewer GJ (2012) Reversible epigenetic histone modifications and Bdnf expression in neurons with aging and from a mouse model of Alzheimer’s disease. Age 35:519–531PubMedPubMedCentralCrossRefGoogle Scholar
  154. Walport LJ, Hopkinson RJ, Vollmar M et al (2014) Human UTY(KDM6C) is a male-specific Nϵ-methyl lysyl demethylase. J Biol Chem 289:18302–18313PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wang S-C, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3:e2698PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wang F, Yang Y, Lin X et al (2013) Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Hum Mol Genet 22:3641–3653PubMedCrossRefPubMedCentralGoogle Scholar
  157. Watson CT, Roussos P, Garg P et al (2016) Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med 8:5PubMedPubMedCentralCrossRefGoogle Scholar
  158. West RL, Lee JM, Maroun LE (1995) Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 6:141–146PubMedCrossRefPubMedCentralGoogle Scholar
  159. Whetstine JR, Nottke A, Lan F et al (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125:467–481PubMedCrossRefGoogle Scholar
  160. Wijsman EM, Daw EW, Yu X et al (2005) APOE and other loci affect age-at-onset in Alzheimer’s disease families with PS2 mutation. Am J Med Genet B Neuropsychiatr Genet 132B:14–20PubMedCrossRefPubMedCentralGoogle Scholar
  161. Wu H, Siarheyeva A, Zeng H et al (2013) Crystal structures of the human histone H4K20 methyltransferases SUV420H1 and SUV420H2. FEBS Lett 587:3859–3868PubMedCrossRefPubMedCentralGoogle Scholar
  162. Wu YE, Parikshak NN, Belgard TG, Geschwind DH (2016) Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nat Neurosci 19:1463–1476PubMedPubMedCentralCrossRefGoogle Scholar
  163. Xiang Y, Zhu Z, Han G et al (2007) JMJD3 is a histone H3K27 demethylase. Cell Res 17:850–857PubMedCrossRefPubMedCentralGoogle Scholar
  164. Yamane K, Toumazou C, Tsukada Y-I et al (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495PubMedCrossRefPubMedCentralGoogle Scholar
  165. Yu L, Chibnik LB, Srivastava GP et al (2015) Association of brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol 72:15–24PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yue W, Cheng W, Liu Z et al (2016) Genome-wide DNA methylation analysis in obsessive-compulsive disorder patients. Sci Rep 6:31333PubMedPubMedCentralCrossRefGoogle Scholar
  167. Zadel M, Maver A, Kovanda A, Peterlin B (2018) DNA methylation profiles in whole blood of Huntington’s disease patients. Front Neurol 9.  https://doi.org/10.3389/fneur.2018.00655
  168. Zagrebelsky M, Korte M (2014) Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 76:628–638PubMedCrossRefPubMedCentralGoogle Scholar
  169. Zee BM, Levin RS, Xu B et al (2010) In vivo residue-specific histone methylation dynamics. J Biol Chem 285:3341–3350PubMedCrossRefPubMedCentralGoogle Scholar
  170. Zhang Y, Yang H, Guo X et al (2014) The PHD1 finger of KDM5B recognizes unmodified H3K4 during the demethylation of histone H3K4me2/3 by KDM5B. Protein Cell 5:837–850PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhang H-S, Ke X-Y, Hu L-L et al (2018) Study on the epigenetic methylation modification of bipolar disorder major genes. Eur Rev Med Pharmacol Sci 22:1421–1425PubMedPubMedCentralGoogle Scholar
  172. Zhao J, Zhu Y, Yang J et al (2017) A genome-wide profiling of brain DNA hydroxymethylation in Alzheimer’s disease. Alzheimers Dement 13:674–688PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zhou X-W, Gustafsson J-A, Tanila H et al (2008) Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A. Neurobiol Dis 31:386–394PubMedCrossRefPubMedCentralGoogle Scholar
  174. Zhubi A, Veldic M, Puri NV et al (2009) An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr Res 111:115–122PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81:294–330PubMedCrossRefPubMedCentralGoogle Scholar
  176. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chromatin and Epigenetics Group, Institute of Bioinformatics and Applied Biotechnology (IBAB)BangaloreIndia

Personalised recommendations