Advertisement

Numerical Flow Calculations

  • Johann Friedrich GülichEmail author
Chapter

Abstract

Real flows are described by partial differential equations which cannot be solved analytically in the general case. By dividing a complex flow domain into a multitude of small cells, these equations can be solved in an approximate manner by numerical methods. Because of their wide range of application, numerical flow calculations (“computational fluid dynamics” or “CFD” for short) have become a special discipline of fluid dynamics.

References

  1. 1.
    Balasubramanian, R., Bradshaw, S., Sabine, E.: Influence of impeller leading edge profiles on cavitation and suction performance. In: Proceedings of 27th International Pump Users Symposium, Texas A&M, pp. 34–44 (2011)Google Scholar
  2. 2.
    Bartsch, P.: Numerische Untersuchung der Leitrad-Laufrad-Wechselwirkungen in axialen Kreiselpumpen. Diss., TU Berlin (1994)Google Scholar
  3. 3.
    Bissig, M., Staubli, T.: Numerische Berechnung der Fluid-Rotorinteraktion im Radseitenraum von Hydromaschinen. In: VDI-Tagung Fluid-Struktur-Wechselwirkung, Heidelberg (2002)Google Scholar
  4. 4.
    Bouziad, A.Y., Farhat, M., Guennoun, F., Kueny, J.L., Avellan, F.: Physical modeling and simulation of leading edge cavitation, application to an industrial inducer. In: 5th International Symposium on Cavitation, Osaka, Cav03-Os-6-014 (2003)Google Scholar
  5. 5.
    Braun, O.: Part load flow in radial centrifugal pumps. Diss., EPF Lausanne (2009)Google Scholar
  6. 6.
    Casey, V.M.: Computational methods for preliminary design and geometry definition in turbomachinery. In: Nato AGARD Lecture Series 195 (1994)Google Scholar
  7. 7.
    Casey, V.M.: The industrial use of CFD in the design of turbomachinery. In: Nato AGARD Lecture Series 195 (1994)Google Scholar
  8. 8.
    Casey, V.M. et al.: Flow analysis in a pump diffuser. Part 2: Validation of a CFD code for steady flow. ASME FED 227, 135–143 (1995)Google Scholar
  9. 9.
    Cebici, T.: Turbulence Models and their Application. Springer, Berlin (2004). ISBN 3-540-40288-8Google Scholar
  10. 10.
    Chen, C.J., Patel, V.C.: Near-wall turbulence models for complex flows including separation. AIAA J. 26, 641–648 (1988)CrossRefGoogle Scholar
  11. 11.
    Cheng-I, Y.: A simulation of viscous incompressible flow through a multiple-blade-row turbomachinery. ASME FED 227, 11–18 (1995)Google Scholar
  12. 12.
    Coleman, H.W.: Some observations on uncertainties and the verification and validation of simulations. ASME J. Fluids Eng. 125, 733–735 (2003)CrossRefGoogle Scholar
  13. 13.
    Combes, J.F., et al.: Numerical investigation of the rotor-stator interaction in a centrifugal pump using a finite element method. ASME FEDSM97-3454 (1997)Google Scholar
  14. 14.
    Combes, J.F., et al.: Numerical and experimental analysis of the flow in a centrifugal pump at nominal and partial flow rate. ASME Paper 92-GT–284Google Scholar
  15. 15.
    Cooper, P., Graf, E.: Computational fluid dynamical analysis of complex internal flows in centrifugal pumps. In: Proceedings of the 11th International Pump Users Symposium, Houston, pp. 83–93 (1994)Google Scholar
  16. 16.
    Cugal, M., Baché, G.: Performance prediction from shutoff to runout flows for a complete stage of a boiler feedpump using CFD. ASME FEDSM97-3334 (1997)Google Scholar
  17. 17.
    Dawes, W.N.: A simulation of the unsteady interaction of a centrifugal impeller with its vaned diffuser: flow analysis. ASME J. Turbomach. 117, 213–221 (1995)CrossRefGoogle Scholar
  18. 18.
    Dupont, P.: Numerical prediction of cavitation in pumps. In: Proceedings of 18th International Pump Users Symposium, Texas A&M, pp. 59–65 (2001)Google Scholar
  19. 19.
    Dupont, P., Casartelli, E.: Numerical prediction of the cavitation in pumps. ASME FEDSM2002–31189Google Scholar
  20. 20.
    Durbin, P.A., et al.: Rough wall modification of two-layer k-ε. ASME JFE 123, 16–21 (2001)Google Scholar
  21. 21.
    ERCOFTAC Special interest group on “Quality and trust in industrial CFD”. Best practice guidelines. http://www.ercoftac.org
  22. 22.
    Favre, J.N.: Resolution du problème inverse par petites perturbations d’un écoulement potentiél incompressible. Diss., EPF Lausanne (1988)Google Scholar
  23. 23.
    Ferziger, J.H.: Review: simulation of incompressible turbulent flows. J. Compo Phys. 69(1), 1–48 (1987)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ferzinger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1997)Google Scholar
  25. 25.
    Franc, J.P., et al.: La Cavitation. Mechanismes physiques et aspects industriels. Presses Universitaires Grenoble (1995)Google Scholar
  26. 26.
    Fraser, S.M., et al.: Improved k-ε-modeling of impeller flow performance of a mixed-flow pump under off-design operating states. Proc. IMechE. 207, 219–229 (1993)CrossRefGoogle Scholar
  27. 27.
    Freitas, C.J.: Engineering editorial policy statement on the control of numerical accuracy. ASME. J. Fluids Eng. 115, 339–340 (1993)CrossRefGoogle Scholar
  28. 28.
    Freitas, C.J.: Perspective: selected benchmarks from commercial CFD codes. ASME. J. Fluids Eng. 117, 208–218 (1995)CrossRefGoogle Scholar
  29. 29.
    Ginter, F.: Berechnung der instationären, turbulenten Strömung in hydraulischen Strömungsmaschien. Diss TU Stuttgart, 1997, Mitteilung Nr 12 Inst für Strömungsmechanik und hydraulische MaschinenGoogle Scholar
  30. 30.
    Ginter, F., Staubli, T.: Performance discontinuity of a shrouded centrifugal pump impeller. In: IMech Conference, pp. 1027–1049 (1999)Google Scholar
  31. 31.
    Ginter, F., et al.: Entwicklung eines Pumpenzulaufkrümmers mit Hilfe der Strömungsberechnung. Pumpentagung Karlsruhe B5 (1992)Google Scholar
  32. 32.
    Goto, A.: Study of internal flows in a mixed-flow pump impeller at various tip clearances using 3D viscous flow computations. ASME Paper 90-GT–36Google Scholar
  33. 33.
    Goto, A.: Numerical and experimental study of 3D flow fields within a diffuser pump stage at off-design condition. ASME FED 227, 1–9 (1995)Google Scholar
  34. 34.
    Göde, E.: 3-dimensional flow simulation in a pump-turbine. ASME FED 86, 29–34 (1989)Google Scholar
  35. 35.
    Graf, E.: Analysis of centrifugal impeller BEP and recirculating flows: comparison of quasi-3D and Navier-Stokes solutions. ASME Pumping Machinery Symposium, pp. 235–245 (1993)Google Scholar
  36. 36.
    Graf, E. et al.: Three-dimensional analysis in a multi-stage pump crossover diffuser. ASME Winter Annual Meeting, pp. 22-29 (1990)Google Scholar
  37. 37.
    Greim, R., et al.: Berechnung dreidimensionaler Strömung in Pumpenlanfrädem. Pumpentagung Karlsruhe B6 (1992)Google Scholar
  38. 38.
    Guide for verification and validation of computational fluid dynamics solutions. AIAA Guide G-077-l998, http://www.aiaa.org
  39. 39.
    Gugau, M.: Beitrag zur Validierung der numerischen Berechnung von Kreiselpumpen. Diss., TU Darmstadt (2004)Google Scholar
  40. 40.
    Gülich, J.F.: Berechnung von Kreiselpumpen mit Navier-Stokes-Verfahren - aus der Sicht des Anwenders. Forsch. Ing. Wes. 60, 307–316 (1994)CrossRefGoogle Scholar
  41. 41.
    Gülich, J.F., Favre, J.N., Denus, K.: An assessment of pump impeller performance predictions by 3D-Navier-Stokes calculations. ASME FEDSM97-334l (1997)Google Scholar
  42. 42.
    Hansen, T.: Comparison of steady-state and transient rotor-stator interaction of an industrial centrifugal pump. In: CFX Users Conference (2001)Google Scholar
  43. 43.
    Hildebrandt, T.: Weiterentwicklung von 3D Navier-Stokes-Strömungsrechenverfahren zur Anwendung in hochbelasteten Verdichter- und Turbinengittern. Diss., Universität der Bundeswehr, München (1998)Google Scholar
  44. 44.
    Hirschi, R.: Prédiction par modélisation numerique tridimensionelle des effects de la cavitation à poche dans les turbomachines hydrauliques. Diss., EPF Lausanne (1998)Google Scholar
  45. 45.
    Holbein, P.: Berechnung dreidimensionaler reibungsbehafteter inkompressibler Innenströmungen. Diss., TU Hannover (1993)Google Scholar
  46. 46.
    Howard, J.H.G. et al.: Flow analysis in a spiral inducer impeller. ASME Paper 93-GT–227Google Scholar
  47. 47.
    Iaccarino, G.: Predictions of a turbulent separated flow using commercial CFD codes. ASME. J. Fluids Eng. 123, 819–828 (2001)CrossRefGoogle Scholar
  48. 48.
    Kamemoto, K., et al.: Analysis of unsteady characteristics of flows through a centrifugal pump impeller by an advanced vortex method. IAHR Symposium, Valencia, pp. 729–738 (1996)Google Scholar
  49. 49.
    Kaps, A.: Numerische Untersuchung der Strömung in einer radialen Kreiselpumpe mit dem Ziel einer wirkungsgrad- und lagerkraftoptimierten Gehäusegestaltung, Diss., TU Berlin (1996)Google Scholar
  50. 50.
    Kaupert, K.A.: Unsteady flow fields in a high specific speed centrifugal impeller. Diss., ETH Zürich (1997)Google Scholar
  51. 51.
    Kato, M., Launder, B.E.: The modeling of turbulent flows around stationary and vibrating square cylinders. In: 9th Symposium on Turbulent Shear Flows, Kyoto, paper 10-4 (1993)Google Scholar
  52. 52.
    Kubota, A., Kato, H., Yamaguchi, H.: Finite difference analysis of unsteady cavitation on a two-dimensional hydrofoil. In: 5th International Conference on Numerical Ship Hydrodynamics, Hiroshima (1989)Google Scholar
  53. 53.
    Lakslnninarayana, B.: An assessment of computational fluid dynamic techniques in the analysis of turbomachinery. ASME. J. Fluids Eng. 113, 315–352 (1991)CrossRefGoogle Scholar
  54. 54.
    Liu, W.: Modeling of swirling turbulent flows. Diss., TU Stuttgart (2001)Google Scholar
  55. 55.
    Mack, R., Drtina, P., Lang, E.: Numerical prediction of erosion on guide vanes and in labyrinth seals in hydraulic turbines. Wear, pp. 233–235, 685–691 (1999)Google Scholar
  56. 56.
    Majidi, K.: Numerische Berechnung der Sekundärströmung in radialen Kreiselpumpen zur Feststofförderung. Diss., TU Berlin (1997)Google Scholar
  57. 57.
    Menter, F.R.: A comparison of some recent eddy-viscosity turbulence models. Transactions ASME 118, 514–519 (1996)Google Scholar
  58. 58.
    Meier-Grotian, J.: Untersuchungen der Radialkrft auf das Laufrad einer Kreiselpumpe bei verschiedenen Spiralgehäuseformen. Diss., TU Braunschweig (1972)Google Scholar
  59. 59.
    Meschkat, S., Stoffel, B.: The local impeller head at different circumferential positions in a volute casing of a centrifugal pump in comparison to the characteristic of the impeller alone. In: 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne (2002)Google Scholar
  60. 60.
    Muggli, F., Holbein, P., Dupont. P.: CFD calculation of a mixed flow pump characteristic from shut-off to maximum flow: ASME FEDSM2001-18072 (2001)Google Scholar
  61. 61.
    Noll, B.: Numerische Stromungsmechanik. Springer, Berlin (1993)CrossRefGoogle Scholar
  62. 62.
    Oberkampf, W.L., Trucano, T.G.: Validation methodology in computational fluid dynamics. AIAA paper 2000-2549 (2000)Google Scholar
  63. 63.
    Oberkampf, W.L., Trucano, T.G.: Verification and validation in computational fluid dynamics. Sandia National Laboratories report 2002-0529 (2002)Google Scholar
  64. 64.
    Oertel, J.R.H., Laurien, E.: Numerische Strömungsmechanik. Springer, Berlin (1995)CrossRefGoogle Scholar
  65. 65.
    Roache, P.J.: Verification and validation in computational science and engineering. Hermosa, Albuquerque, http://www.hermosa-pub/hermosa (1998)
  66. 66.
    Rodi, W.: Turbulence modelling for incompressible flows. Phys. Chem. Hydrodyn. 7(5/6), 297–324 (1986)Google Scholar
  67. 67.
    Rodi, W.: Turbulence Models and Their Application in Hydraulics, 3rd edn. Balkema, Rotterdam (1993)Google Scholar
  68. 68.
    Rütten, F.: Large eddy simulation in 90°-pipe bend flows. J. Turbul. 2, 003 (2001)CrossRefGoogle Scholar
  69. 69.
    Schachenmann, A., Gülich, J.F.: Vergleich von drei Navier-Stokes Berechnungsverfahren mit LDA-Messungen an einem radialen Pumpenlaufrad. Pumpentagung Karlsruhe B7 (1992)Google Scholar
  70. 70.
    Schachenmann, A., et al.: Comparison of 3 Navier-Stokes codes with LDA-measurements on an industrial radial pump impeller. In: ASME Fluids Engineering Conference, Los Angeles (1992)Google Scholar
  71. 71.
    Schäfer, M.: Numerik im Maschinenbau. Springer, Berlin (1999)CrossRefGoogle Scholar
  72. 72.
    Schilling, R.: A critical review of numerical models predicting the flow through hydraulic machinery bladings. In: 17th IAHR Symposium, Beijing, GL2 (1994)Google Scholar
  73. 73.
    Schilling, R.: Stand der numerischen Strömungssimulation bei hydraulischen Turbomaschinen. Festschrift zum Jubiläum 100 Jahre Turbomaschinen und 50 Jahre Fluidantriebstechnik an der TU Darmstadt (1997)Google Scholar
  74. 74.
    Schönung, B.E.: Numerische Strömungsmechanik. Springer, Berlin (1990)CrossRefGoogle Scholar
  75. 75.
    Song, C.C.S. et al.: Simulation of flow through Francis turbine by LES method. In: IAHR Symposium, Valencia. pp. 267–276 (1996)Google Scholar
  76. 76.
    Song, C.C.S., et al.: Simulation of flow through pump-turbine. In: IAHR Symposium, Valencia (1996)Google Scholar
  77. 77.
    Staubli, T., et al.: Verification of computed flow fields in a pump of high specific speed. ASME FED 227, 75–82 (1995)Google Scholar
  78. 78.
    Staubli, T., Bissig, M.: Numerical parameter study of rotor side spaces. In: 21st IAHR Symposium Hydraulic Machinery and systems, Lausanne (2002)Google Scholar
  79. 79.
    Steinmann, A.: Numerische und experimentelle Untersuchung der ein- und zweiphasigen Strömung in einem technisch belüfteten Abwasserteich. Diss TU Berlin (2002)Google Scholar
  80. 80.
    Stem, F., et al.: Comprehensive approach to verification and validation of CFD calculations Part 1: Methodology and procedures. ASME. J. Fluids Eng. 123, 793–802 (2001)CrossRefGoogle Scholar
  81. 81.
    Tanabe, S., et al.: Turbulent flow analysis in a pump impeller. ASME Fluid Mach. Forum FED 119 1–6 (1991)Google Scholar
  82. 82.
    Torbergsen, E., White, M.F.: Transient simulation of impeller/diffuser interactions. ASME FEDSM97-3453 (1997)Google Scholar
  83. 83.
    Tremante, A., et al.: Numerical turbulent simulation of the two-phase flow (liquid/gas) through a cascade of an axial pump. ASME FEDSM2001–18086Google Scholar
  84. 84.
    Treutz, G.: Numerische Simulation der instationären Strömung in einer Kreiselpumpe. Diss., TU Darmstadt (2002)Google Scholar
  85. 85.
    Visser, F.C.: Some user experience demonstrating the use of CFD for cavitation analysis and head prediction of centrifugal pumps. ASME FEDSM2001–18087Google Scholar
  86. 86.
    Watzelt, C., et al.: Real-time design of hydraulic machinery bladings on a parallel environment system. ASME FED 227, 45–51 (1995)Google Scholar
  87. 87.
    Chen, W.-C., et al.: CFD as a turbomachinery design tool: code validation. ASME FED 227, 67–74 (1995)Google Scholar
  88. 88.
    Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, La Canada, California (1998)Google Scholar
  89. 89.
    Wu, C.H.: A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial, radial and mixed-flow types. Trans. ASME 74, 1363–1380 (1952)Google Scholar
  90. 90.
    Zangeneh, M., Goto, A.: Turbodesign: next generation design software for pumps. World Pumps, pp 32–36 (2003 Feb)Google Scholar
  91. 91.
    Will, B.C., Benra, F.K., Dohmen, H.J.: Investigation of the flow in the impeller side clearances of a centrifugal pump with volute casing. J. Therm. Sci. 21(3), 197–208 (2012)Google Scholar
  92. 92.
    Juckelandt, K., Wurm, F.H.: Applicability of wall-function approach in simulations of turbomachinery. GT 2015-42014Google Scholar
  93. 93.
    Limbach, P., Skoda, R.: Numerical simulation and experimental validation for NPSH prediction of a low-specific speed centrifugal pump with a variation of cavitation model mass transfer parameters. In: 11th Pump User’s International Forum Düsseldorf (2016)Google Scholar
  94. 94.
    Juckelandt, K., Wurm, F.H.: Experimental and numerical analysis of a low-specific speed pump. In: 11th Pump User’s International Forum (2016)Google Scholar
  95. 95.
    Höller, S., et al: Low-specific speed mixed-flow API pump for single- and multistage usage. In: 11th Pump User’s International Forum (2016)Google Scholar
  96. 96.
    Nishi, Y., et al.: Effect of blade outlet angle on radial thrust of single-blade centrifugal pump. In: 26th IAHR Symposium Hydraulic Machinery and Systems (2012)Google Scholar
  97. 97.
    Berten, S., et al.: Experimental and numerical analysis of pressure pulsations and mechanical deformations in a centrifugal pump impeller. ASME AJK2011-06057Google Scholar
  98. 98.
    Feng, J., Benra, F.K., Dohmen, H.J.: Numerical investigation on pressure fluctuations for different configurations of vaned-diffuser pumps. Int. J. Rotating Mach. (2007)Google Scholar
  99. 99.
    Miyabe M et al: Rotating stall behavior in a diffuser of a mixed-flow pump and its suppression. ASME FEDSM-2008-55132Google Scholar
  100. 100.
    Schiffer, J., et al.: Performance analysis of a single-blade impeller based on unsteady 3D numerical simulation. In: 11th Pump User’s International Forum Düsseldorf (2016)Google Scholar
  101. 101.
    Lechler, S.: Numerische Strömungsberechnung. Springer, Berlin (2018)CrossRefGoogle Scholar
  102. 102.
    ANSYS CFX Theory Guide (internet) www.sharcnet.ca/Software/Ansys/16.2.3
  103. 103.
    Chatagny, L., Berten, S.: Challenges and open questions in cavitation simulations on centrifugal pump applications. In: 11th Pump User’s International Forum Düsseldorf (2016), L01-046Google Scholar
  104. 104.
    Liu, H., Ding, J., et al.: Numerical research on hydraulically generated vibration and noise of a centrifugal pump volute with impeller outlet width variation. Math. Probl. Eng., article ID 620389 (2014). HindawiGoogle Scholar
  105. 105.
    Liu, H., et al.: Investigation into transient flow in a centrifugal pump with wear ring clearance variation. Adv. Mech. Eng., article ID 693097 (2014). HindawiGoogle Scholar
  106. 106.
    Wang, Y., et al.: Applicability of turbulence models to low-specific speed centrifugal pump. In: 26th IAHR Symposium (2012)Google Scholar
  107. 107.
    Spence, R., Amaral-Teixeira, J.: Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests. Computers & Fluids 37, 690–704 (2008)CrossRefGoogle Scholar
  108. 108.
    Roclawski, H.: Numerische und experimentelle Untersuchungen an einer radialen Kreiselpumpenstufe mit minimalem Stufendurchmesser. Diss., TU Kaiserslautern (2008)Google Scholar
  109. 109.
    Si, Q., et al.: Numerical investigation of pressure fluctuations in a centrifugal pump volute based on SAS model an experimental validation. Adv. Mech. Eng. (2014 Feb)Google Scholar
  110. 110.
    Roclawski, H., Hellmann, D.H.: Numerical simulation of a radial multistage centrifugal pump. AIAA 2006-1428Google Scholar
  111. 111.
    Menter, F.R.: Best practice: scale-resolving simulations in ANSYS CFD. Version 2, 2015Google Scholar
  112. 112.
    Li, X., et al.: Experimental and numerical investigations of head-flow curve instability of a single-stage centrifugal pump with volute casing. Proc. IMechE Part A: J. Power Energy (2016)Google Scholar
  113. 113.
    Denton, J.D.: Some limitations of turbomachinery CFD. ASME GT2010-22540Google Scholar
  114. 114.
    Fleder, A.: Numerische und experimentelle Untersuchung des Einflusses wichtiger Geometrieparameter auf die Performance von Seitenkanalpumpen unter Berücksichtigung der Strömungsverluste. Thesis, TU Kaiserslautern (2015)Google Scholar
  115. 115.
    Fecarotta, O., et al.: Preliminary development of a method for impact erosion prediction in pumps running as turbines. MDPI Proc. 2, 680 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.VilleneuveSwitzerland

Personalised recommendations