Advertisement

Design of the Hydraulic Components

  • Johann Friedrich GülichEmail author
Chapter

Abstract

As per the state of the art, the hydraulic design of the various types of impellers, diffusers, volutes and inlet casing is based on empirical methods such as described in this chapter. The first design created that way is then subject to analysis and optimization by CFD. Even then the accuracy of performance prediction is not always satisfactory. This, because the 3D-flow through the pump depends on the complex shapes of the flow paths given by the inlet casing, impeller and collector. To compound the issue, the interaction of the main flow with the flow in the impeller side rooms can have an unexpectedly large influence on the Q-H-curve and efficiency (an example can be found in Chap.  9.1). Always remember that it is the combination of all parameters and shapes of the hydraulic channels which determines the flow patterns - hence performance. In order to reduce the uncertainties of performance prediction, a systematic approach to hydraulic design is advocated. To this end, Chap. 7.14 introduces a novel concept for a fully analytical description of the impeller geometry. Prior to starting the hydraulic design all requirements the pump has to fulfill and the boundary conditions imposed should be thoroughly reviewed and documented (see “hydraulic specification” in Chap.  17).

References

  1. 1.
    Abbot, I.H., Doenhoff, A.E.: Theory of wing sections. Dover, Mineola (1959)Google Scholar
  2. 2.
    Aschenbrenner, A.: Untersuchungen über den Einfluß des Abstandes zwischen Lauf- und Leitrad auf das Betriebsverhalten einstufiger Axialpumpenbeschaufelungen. Dissertation, TU Braunschweig (1965)Google Scholar
  3. 3.
    Bakir, F., et al.: Experimental analysis of an axial inducer influence of the shape of the blade leading edge on the performances in cavitating regime. ASME J. Fluid. Mech. 125, 293–301 (2003)CrossRefGoogle Scholar
  4. 4.
    Balasubramanian, R., Bradshaw, S., Sabine, E.: Influence of impeller leading edge profiles on cavitation and suction performance. In: Proceedings of 27th International Pump Users Symposium, pp. 34–44. Texas A & M (2011)Google Scholar
  5. 5.
    Barske, U.M.: Development of some unconventional centrifugal pumps. Proc. IMechE. 174, 2 (1960)CrossRefGoogle Scholar
  6. 6.
    Bergen, J.U.: Untersuchungen an einer Kreiselpumpe mit verstellbarem Spiralgehäuse. Dissertation, TU Braunschweig (1969)Google Scholar
  7. 7.
    Bernauer, J., et al.: Technik und Anwendung moderner Propellerpumpen. KSB Techn. Ber. 19 (1985)Google Scholar
  8. 8.
    Böke, J.: Experimentelle und theoretische Untersuchungen der hydraulischen Kräfte an einschaufeligen Laufrädern von Abwasserpumpen unter Berücksichtigung der Änderung geometrischer Parameter. Dissertation, TU Kaiserslautern, Schaker Aachen (2001)Google Scholar
  9. 9.
    Conrad, O.: Belastungskriterien von Verzögerungsgittern. MTZ. 26(8), 343–348 (1965)Google Scholar
  10. 10.
    Cooper, P., et al.: Reduction of cavitation damage in a high-energy water injection pump. ASME AJK2011–06092Google Scholar
  11. 11.
    Cooper, P.: Pump hydraulics—advanced short course 8. In: 13th International Pump Users Symposium, Houston (1996)Google Scholar
  12. 12.
    Cropper, M., Dupont, P., Parker, J.: Low flow—high pressure. Sulzer. Tech. Rev. 3 + 4, 15–17 (2005)Google Scholar
  13. 13.
    Dahl, T.: Centrifugal pump hydraulics for low specific speed application. In: 6th International Pump Users Symposium, Houston (1989)Google Scholar
  14. 14.
    Dupont, P., Casartelli, E.: Numerical prediction of the cavitation in pumps. ASME FEDSM2002–31189Google Scholar
  15. 15.
    Eppler, R.: Airfoil design and data. Springer, Berlin (1990)CrossRefGoogle Scholar
  16. 16.
    Favre, J.N.: Development of a tool to reduce the design time and to improve radial or mixed-flow impeller performance. ASME Fluid Mach. FED. 222, 1–9 (1995)Google Scholar
  17. 17.
    Flörkemeier, K.H.: Experimentelle Untersuchungen zur Optimierung von Spiralgehäusen für Kreiselpumpen mit tangentialen und radialen Druckstutzen. Dissertation, TU Braunschweig (1976)Google Scholar
  18. 18.
    Forstner, M.: Experimentelle Untersuchungen an vor- und rückwärts gepfleilten Axialpumpenschaufeln. Dissertation, TU Graz (2002)Google Scholar
  19. 19.
    Furst, R., Desclaux, J.: A simple procedure for prediction of NPSH required by inducers. ASME FED. 81, 1–9 (1989)Google Scholar
  20. 20.
    Glas, W.: Optimierung gepfleilter Pumpenschaufeln mit evolutionären Algorithmen. Dissertation, TU Graz (2001)Google Scholar
  21. 21.
    Goltz, I., Kosyna, G., Stark, U., Saathoff, H., Bross, S.: Stall inception phenomena in a single-stage axial pump. In: 5th European Conference on Turbomachinery, Prag (2003)Google Scholar
  22. 22.
    Gülich, J.F.: Blade wheel for a pump. US patent US 8,444,370 B2 (2013)Google Scholar
  23. 23.
    Hergt, P., et al.: The suction performance of centrifugal pumps—possibilities and limits of improvements. In: Proceedings of 13th International Pump Users Symposium, pp. 13–25. Houston (1996)Google Scholar
  24. 24.
    Hergt, P.: Design approach for feedpump suction impellers. In: EPRI Power Plant Pumps Symposium Tampa (1991)Google Scholar
  25. 25.
    Hergt, P.: Hydraulic design of rotodynamic pumps. In: Krishna, R. (ed.) Hydraulic design of hydraulic machinery. Avebury, Aldershot (1997)Google Scholar
  26. 26.
    Hergt, P.: Lift and drag coefficients of rotating radial and semi-axial cascades. In: 7th Conference on Fluid Machinery, Budapest (1983)Google Scholar
  27. 27.
    Hirschi, R.: Prédiction par modélisation numerique tridimensionelle des effects de la cavitation à poche dans les turbomachines hydrauliques. Dissertation, EPF Lausanne (1998)Google Scholar
  28. 28.
    Holzhüter, E.: Einfluß der Kavitation auf den erreichbaren Wirkungsgrad bei der Berechnung des Gitters einer Axialkreiselpumpe. Pumpentagung Karlsruhe), K12 (1978)Google Scholar
  29. 29.
    Jacobsen, J.K.: NASA space vehicle criteria for liquid rocket engine turbopump inducers. NASA SP-8052 (1971)Google Scholar
  30. 30.
    Janigro, A., Ferrini, F.: Inducer pumps. Von Karman Inst. LS. 61 (1973)Google Scholar
  31. 31.
    Jensen, R.: Experimentelle Untersuchungen an Einfach- und Doppelspiralen für Kreiselpumpen. Dissertation, TU Braunschweig (1984)Google Scholar
  32. 32.
    Johnsen, I.A., Bullock, R.O.: Aerodynamic design of axial-flow compressors. NASA-SP36 (1965)Google Scholar
  33. 33.
    Kowalik, M.: Inducers-state of the art. World Pumps 32–35 (1993)Google Scholar
  34. 34.
    Krieger, P.: Spezielle Profilierung an Laufrädern von Kreiselpumpen zur Senkung von NPSH. VGB Kraftwerkstechnik. 72, Nr 5 (1992)Google Scholar
  35. 35.
    Kuhn, K.: Experimentelle Untersuchung einer Axialpumpe und Rohrturbine mit gepfleilten Schaufeln. Dissertation, TU Graz (2000)Google Scholar
  36. 36.
    Lapray, J.F.: Seventy-five years of experience in concrete volute pumps. IMechE Paper C439/026 (1992)Google Scholar
  37. 37.
    Lieblein, S., et al.: Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements. NACA RM 252, (1963)Google Scholar
  38. 38.
    Lieblein, S.: Incidence and deviation angle correlations for compressor cascades. ASME J. Basic. Eng. 82, 575–587 (1960)CrossRefGoogle Scholar
  39. 39.
    Lieblein, S.: Loss and stall analysis of compressor cascades. ASME J. Basic. Eng. 81, 387–400 (1959)CrossRefGoogle Scholar
  40. 40.
    Lohmberg, A.: Strömungsbeeinflussung in Laufrädern von Radialverdichtern durch Neigung det Schaufeln in Umfangsrichtung. Dissertation, Ruhr-Universität Bochum (2000)Google Scholar
  41. 41.
    Lomakin, A.A.: Zentrifugal- und Axialpumpen, 2nd edn. Maschinostrojenje, Moskau (1966)Google Scholar
  42. 42.
    Lottermoser, H.: Anforderungen an die Sicherheitseinspeisepumpen eines Kernkraftwerkes. Pumpentagung Karlsruhe, A2 (1984)Google Scholar
  43. 43.
    Maceyka, T.D.: New two-stage concept optimizes high-speed pump performance. IMechE Paper C110/87 (1987)Google Scholar
  44. 44.
    Meier-Grotian, J.: Untersuchung der Radialkraft auf das Laufrad bei verschiedenen Spiralgehäuseformen, Dissertation, TU Braunschweig (1972)Google Scholar
  45. 45.
    NASA (ed.): Liquid rocket engine axial-flow turbopumps. NASA SP-8125 (1978)Google Scholar
  46. 46.
    Nicklas, A., Scianna, S.: Kreiselpumpe an der Grenze zur Verdrängerpumpe. Pumpentagung Karlsruhe, A 5-03 (1992)Google Scholar
  47. 47.
    NREC-BulletinGoogle Scholar
  48. 48.
    Penninger, G.: Schwingungen und mechanische Belastungen von Axialpumpenschaufeln mit und ohne Pfleilung im kavitierenden off-design Betrieb. Dissertation, TU Graz (2004)Google Scholar
  49. 49.
    Radke, M., et al.: Einfluß der Laufradgeometrie auf Betriebssicherheit und Lebenszykluskosten von Abwasserpumpen. KSB Technik kompakt. Ausgabe 4 Juni (2001)Google Scholar
  50. 50.
    Riegels, F.W.: Aerodynamische Profile. Oldenbourg, München (1958)zbMATHGoogle Scholar
  51. 51.
    Roclawski, H., Hellmann, D.H.: Numerical simulation of a radial multistage centrifugal pump. AIAA 2006-1428, 44th AIAA Aerospace Sciences Meeting (2006)Google Scholar
  52. 52.
    Roclawski, H., Hellmann, D.H.: Rotor-Stator interaction of a radial centrifugal pump stage with minimum stage diameter. WSEAS Trans. Fluid Mech. 1(5) (2006)Google Scholar
  53. 53.
    Roclawski, H., Weiten, A., Hellmann, D.H.: Numerical investigation and optimization of a stator for a radial submersible pump stage with minimum stage diameter ASME FEDSM2006-98181 (2006)Google Scholar
  54. 54.
    Roclawski, H.: Numerische und experimentelle Untersuchungen an einer radialen Kreiselpumpenstufe mit minimalem Stufendurchmesser. Dissertation, TU Kaiserslautern (2008)Google Scholar
  55. 55.
    Schiller, F.: Theoretische und experimentelle Untersuchungen zur Bestimmung der Belastungsgrenze bei hochbelasteten Axialventilatoren. Dissertation, TU Braunschweig (1984)Google Scholar
  56. 56.
    Schroeder, C.: Experimentelle Untersuchungen zur Auslegung hochbelasteter Axialventilatoren. Dissertation, TU Braunschweig (1982)Google Scholar
  57. 57.
    Sloteman, D.P. et al.: Design of high-energy pump impellers to avoid cavitation instabilities and damage. In: EPRI Power Plant Pumps Symposium, Tampa (1991)Google Scholar
  58. 58.
    Spring, H.: Critique of three boiler feedpump suction impellers. ASME Pump. Mach. Symp. FED. 81, 31–39 (1989)Google Scholar
  59. 59.
    Srivastava, J.: Large vertical concrete sea water pumps. Indian Pump Manufacture Conference (1991)Google Scholar
  60. 60.
    Stark, M.: Auslegungskriterien für radiale Abwasserpumpenlaufräder mit einer Schaufel und unterschiedlichem Energieverlauf. VDI Forschungsheft. 57, Nr. 664 (1991)Google Scholar
  61. 61.
    Strinning, P. et al.: Strömungstechnischer Vergleich zweier Auslegungskonzepte für Axialpumpen in Tauchmotorausführung. Pumpentagung Karlsruhe, B 4–08 (1992)Google Scholar
  62. 62.
    Tsugava, T.: Influence of hub-tip ratio on pump performance. ASME FEDSM97-3712 (1997)Google Scholar
  63. 63.
    Tsujimoto, Y., et al.: Observation of oscillating cavitation in an inducer. ASME J. Fluids. Eng. 119, 775–781 (1997)CrossRefGoogle Scholar
  64. 64.
    Ulbrich, C.: Experimentelle Untersuchungen der Pumpencharakteristiken und Geschwindigkeitsfelder einer Einschaufel-Kreiselpumpe. Dissertation, TU Berlin (1997)Google Scholar
  65. 65.
    Weinig, F.: ZAMM 13, 224 ff (1933)Google Scholar
  66. 66.
    Weiten, A.: Vergleich der strömungsmechanischen und rotordynamischen Eigenschaft von Gliederpumpenstufen mit radialen Leiträdern und mit minimalem Stufendurchmesser. Dissertation, TU Kaiserslautern (2006)Google Scholar
  67. 67.
    Wesche, W.: Auslegung von Pumpenspiralen mit dicken Gehäusezunge. Techn. Rundschau. Sulzer. 4, 157–161 (1980)Google Scholar
  68. 68.
    Wesche, W.: Beitrag zur Auslegung von Pumpenspiralen. VDI Ber. 424 (1981)Google Scholar
  69. 69.
    Wesche, W.: Experimentelle Untersuchungen am Leitrad einer radialen Kreiselpumpe. Dissertation, TU Braunschweig (1989)Google Scholar
  70. 70.
    Wesche, W.: Method for calculating the number of vanes at centrifugal pumps. In: Proceedings of 6th Conference on Fluid Machinery, pp. 1285–1293. Budapest (1969)Google Scholar
  71. 71.
    Worster, D.M., Worster, C.: Calculation of 3D-flows in impellers and its use in improving cavitation performance in centrifugal pumps. In: 2nd Conference on Cavitation, Paper IMechE C203/83 (1983)Google Scholar
  72. 72.
    Worster, R.C.: The flow in volutes and its effect on centrifugal pump performance. Proc. ImechE. 177(31), 843–875 (1963)Google Scholar
  73. 73.
    Cooper, P., Graf, E.: Computational fluid dynamical analysis of complex internal flows in centrifugal pumps. In: Proceedings of 11th International Pump Users Symposium, Houston, pp. 83–93 (1994)Google Scholar
  74. 74.
    Teesink, P., Visser, F., Jochems, J.: Efficiency optimization of a 30-MW boiler feed pump. ASME FEDSM 2013-16090Google Scholar
  75. 75.
    Van der Schoot, M., Visser, F.: Efficiency upgrade of a double-case pump using CFD and model testing. AJKFluids 2015-33379Google Scholar
  76. 76.
    Weldon, R.: A new type of boiler feed pump for 660-MW electricity generating sets. Tech. Rev. Sulzer 3, 189–198 (1973)Google Scholar
  77. 77.
    Gerdes, R., Dupont, P., Meuter, P.: A long history of high pressure. Sulzer Tech. Rev. 2&3, 9–15 (2009)Google Scholar
  78. 78.
    Germaine, B., Fitch, G., Harris, C.: State-of-the-art boiler feedpump upgrade for Ratcliffe power station. IMech S966/003/2004. In: 2nd International Symposium on Centrifugal PumpsGoogle Scholar
  79. 79.
    Elsässer, T., et al.: Hydraulische und konstruktive Ausführung und erste Betriebserfahrungen mit der Turbospeisepumpe für den Block K des Braunkohlekraftwerks Niederaußem. Pump Users Intl Forum 2004Google Scholar
  80. 80.
    Cowan, D., Liebner, T., Bradshaw, S.: Influence of impeller suction specific speed on vibration performance. In: 29th International Pump Users Symposium, Houston, pp. 18–47 (2013)Google Scholar
  81. 81.
    Gülich, J.F.: Selection criteria for suction impellers of centrifugal pumps. World Pumps, Parts 1 to 3, January, March, April (2001)Google Scholar
  82. 82.
    Mejri, I., et al.: Comparison of computational results obtained from a VOF cavitation model with experimental investigations of three inducers. ASME FEDSM2005-77084. Parts 1 and 2, 1-44Google Scholar
  83. 83.
    Ashihara, K., Goto, A.: Effect of blade loading on pump inducer performance and flow fields. ASMEJFE2002-31200 (2002)Google Scholar
  84. 84.
    Kang, D., et al.: Suppression of cavitation instabilities in an inducer by circumferential groove and explanation of higher frequency components. Int. J. Fluid Mach. 3(2), 137–149 (2010)CrossRefGoogle Scholar
  85. 85.
    Bakir, F., et al.: Design and analysis of axial inducer performance. ASME FEDSM 98-5118Google Scholar
  86. 86.
    Kagawa, S., Kurokawa, J.: New centrifugal pump in very low specific speed range. ASME AJK2011-06018Google Scholar
  87. 87.
    Begnini, H., Jaberg, H.: Development of a novel centrifugal pump with lowest specific speed. In: 11th Pump User’s International Forum (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.VilleneuveSwitzerland

Personalised recommendations