Advertisement

Noise and Vibrations

  • Johann Friedrich GülichEmail author
Chapter

Abstract

As explained in Chap.  5, the flow at the impeller outlet is non-uniform. The diffuser vanes or volute cutwaters are thus approached by an unsteady flow. The flow in the stator acts back on the velocity field in the impeller. The related phenomena are called “rotor/stator interaction” (RSI). As a consequence of the RSI, hydraulic excitation forces are generated. These give rise to pressure pulsations, mechanical vibrations and alternating stresses in various pump components. The vibrations transmitted to the foundations spread as solid-borne noise throughout the building. The pressure pulsations excite the pump casing to vibrations. They travel as fluid-borne noise through the piping system, where they generate vibrations of the pipe walls. The vibrating walls and structures radiate air-borne noise.

References

  1. 1.
    Adams, M.L.: Rotating Machinery Vibration. Marcel Dekker Inc (2001)Google Scholar
  2. 2.
    Alford, J.S.: Protecting turbomachinery from self-excited rotor whirl. ASME J. Eng. Power 87, 333–344 (1965)CrossRefGoogle Scholar
  3. 3.
    Amoser, M.: Strömungsfelder und Radialkräfte an Labyrinthdichtungen hydraulischer Strömungsmaschinen. Diss. ETH. Nr. 11150 (1995)Google Scholar
  4. 4.
    Arndt, N., et al.: Unsteady diffuser vane pressure and impeller wake measurements in a centrifugal pump. In: Proceedings of 8th Conference on Turbomachinery, Budapest, pp. 49–56 (1987)Google Scholar
  5. 5.
    Au-Yang, M. K.: Flow-induced Vibrations of Power and Process Plant Components. Professional Engineering Publishing Ltd (2001)Google Scholar
  6. 6.
    Berten, S.: Hydrodynamics of high specific power pumps for off-design operating conditions. Dissertation, EPF, Lausanne (2010)Google Scholar
  7. 7.
    Berten, S., et al.: Experimental Investigation of Flow Instabilities and Rotating Stall in a High-Energy Centrifugal Pump Stage. ASME. FEDSM (2009)Google Scholar
  8. 8.
    Blevins, R.D.: Formulas for Natural Frequency and Mode Shape (Reissue). Krieger, Malabar (1995)Google Scholar
  9. 9.
    Blevins, R.D.: Flow-Induced Vibrations (Reprinted 2nd edn.). Krieger Publishing Company, Malabar (2001)Google Scholar
  10. 10.
    Bolleter, U.: On blade passage tones of centrifugal pumps. Vibrations 4(3), 8–13 (1988)Google Scholar
  11. 11.
    Bolleter, U.: Generation and propagation of pressure pulsations in centrifugal pump systems. In: AECL Seminar on Acoustic Pulsations in Rotating Machinery, Toronto (1993)Google Scholar
  12. 12.
    Bolleter, U., et al.: Hydraulic and mechanical interactions of feedpump systems. EPRI Report TR-100990 (Sept 1992)Google Scholar
  13. 13.
    Bolleter, U., et al.: Rotordynamic modeling and testing of boiler feedpumps. EPRI Report. TR-100980 (Sept 1992)Google Scholar
  14. 14.
    Braun, O.: Part load flow in radial centrifugal pumps. Dissertation, EPF Lausanne (2009)Google Scholar
  15. 15.
    Brennen, C.E.: Hydrodynamics of Pumps. Concepts ETI, Norwich (1994)zbMATHGoogle Scholar
  16. 16.
    Casey, V.M., et al.: Flow analysis in a pump diffuser. Part 2: validation of a CFD code for steady flow. ASME FED 227, 135–143 (1995)Google Scholar
  17. 17.
    Chen, Y.N.: Wasserdruckschwingungen in Spiralgehäusen von Speicherpumpen. Techn Rundschau Sulzer. Forschungsheft, 21–34 (1961)Google Scholar
  18. 18.
    Chen, Y.N., Beurer, P.: Strömungserregte Schwingungen an Platten infolge Karman’scher Wirbelstraßen. Pumpentagung, Karlsruhe (K6) (1973)Google Scholar
  19. 19.
    Chen, Y.N., Florjancic, D.: Vortex-induced resonance in a pipe system due to branching. IMech C109/75 (1975)Google Scholar
  20. 20.
    Chen, Y.N., et al.: Reduction of vibrations in a centrifugal pump hydraulic system, pp. 78–84. IAHR Karlsruhe (1979)Google Scholar
  21. 21.
    Childs, D.: Turbomachinery Rotordynamics. Wiley, New York (1993)Google Scholar
  22. 22.
    Childs, D.W., et al.: Annular honeycomb seal test results for leakage and rotordynamic coefficients. ASME Paper. 88-Trib-35Google Scholar
  23. 23.
    Cooper, P., et al.: Minimum continuous stable flow in centrifugal pumps. In: Proceedings of Symposium Power Plant Pumps, New Orleans, 1987 EPRI CS-5857 (1988)Google Scholar
  24. 24.
    Corbo, M.A., Stearns, C.F.: Practical design against pump pulsations. In: Proceedings of 22nd International Pump Users Symposium, pp. 137–177. Texas A&M (2005)Google Scholar
  25. 25.
    Cremer, R., Heckl, M.: Körperschall, 2nd edn. Springer, Berlin (1995)zbMATHGoogle Scholar
  26. 26.
    Deeprose, W.M., et al.: Current industrial pump and fan fluid-borne noise level prediction. IMechE Paper. C251/77 43–50 (1977)Google Scholar
  27. 27.
    Domm, U., Dernedde, R.: Über eine Auswahlregel für die Lauf- und Leitschaufelzahl von Kreiselpumpen. KSB. Techn. Ber. 9 (1964)Google Scholar
  28. 28.
    Dörfler, P., Sick, M., Coutu, A.: Flow-Induced Pulsation and Vibrations in Hydroelectric Machinery. Springer, London (2013)CrossRefGoogle Scholar
  29. 29.
    Dubas, M.: Über die Erregung infolge der Periodizität von Turbomaschinen. Ing. Archiv. 54, 413–426 (1984)CrossRefGoogle Scholar
  30. 30.
    Ehrich, F.F.: Handbook of Rotordynamics. McGraw Hill, New York (1992)Google Scholar
  31. 31.
    Ehrich, F.F., Childs, D.: Self-excited vibration in high-performance turbomachinery. Mech. Eng. 106, 66–79 (1984)Google Scholar
  32. 32.
    Europump Leitfaden: Geräuschemission bei Kreiselpumpen (2002)Google Scholar
  33. 33.
    Florjancic, D.: Entwicklung der Speisepumpen und grossen mehrstufigen Pumpen für die Wasserversorgung. Tech. Rev. Sulzer. 4, 241–254 (1973)Google Scholar
  34. 34.
    Florjancic, S.: Annular seals of high energy centrifugal pumps: a new theory and full scale measurement of rotordynamic coefficients and hydraulic friction factors. Dissertation, ETH Zürich (1990)Google Scholar
  35. 35.
    Försching, H.W.: Grundlagen der Aeroelastik. Springer, Berlin (1974)zbMATHCrossRefGoogle Scholar
  36. 36.
    Freese, H.D.: Querkräfte in axial durchströmten Drosselspalten. Pumpentagung, Karlsruhe (K6) (1978)Google Scholar
  37. 37.
    Gaffal, K.: Innovatives, umweltfreundliches und wirtschaftliches Speisepumpenkonzept erprobt. VGB Kraftwerkstech. 73, 223–230 (1993)Google Scholar
  38. 38.
    Graf, K.: Spaltströmungsbedingte Kräfte an berührungslosen Dichtungen von hydraulischen und thermischen Turbomaschinen. Dissertation, ETH Nr. 9319 (1991)Google Scholar
  39. 39.
    Greitzer, E.M.: The stability of pumping systems. ASME J. Fluids Eng. 103, 193–242 (1981)CrossRefGoogle Scholar
  40. 40.
    Guinzburg, A.: Rotordynamic forces generated by discharge to suction leakage flows in centrifugal pumps. California Institute of Technology Report E249.14 (1992)Google Scholar
  41. 41.
    Gülich, J.F.: European Patent EP 0224764 B1 (1989)Google Scholar
  42. 42.
    Gülich, J.F., et al.: Pump vibrations excited by cavitation. In: IMechE Conference on Fluid Machinery, The Hague (1990)Google Scholar
  43. 43.
    Gülich, J.F., et al.: Rotor dynamic and thermal deformation tests of high-speed boiler feedpumps. EPRI Report GS-7405 (July 1991)Google Scholar
  44. 44.
    Gülich, J.F., Bolleter, U.: Pressure pulsations in centrifugal pumps. ASME J. Vibr. Acoust. 114, 272–279 (1992)CrossRefGoogle Scholar
  45. 45.
    Guo, S., Maruta, Y.: Experimental investigation on pressure fluctuations and vibration of the impeller in a centrifugal pump with vaned diffusers. JSME In. J. 48(1), 136–143 (2005)Google Scholar
  46. 46.
    Hartlen, R.T., et al.: Dynamic interaction between pump and piping system. In: AECL Seminar on Acoustic Pulsations in Rotating Machinery, Toronto (1993)Google Scholar
  47. 47.
    Heckl, M., Müller, H.A.: Taschenbuch der Technischen Akustik. Springer, Berlin (1975)CrossRefGoogle Scholar
  48. 48.
    Hergt, P., Krieger, P.: Radialkräfte in Leitradpumpen. KSB. Techn. Ber. 32–39 (1973)Google Scholar
  49. 49.
    Hergt, P., et al.: Fluid dynamics of slurry pump impellers. In: 8th International Conference Transport and Sedimentation of Solids, Prague, D2-1 (1995)Google Scholar
  50. 50.
    Höller, K.: In “25 Jahre ASTRÖ”. Aströ, Graz (1979)Google Scholar
  51. 51.
    Kaiser, T., Osman, R., Dickau, R.: Analysis guide for variable frequency drives operated centrifugal pumps. Proceedings of the 24th International Pump Users Symposium, Texas A&M, pp. 81–106 (2008)Google Scholar
  52. 52.
    Kanki, H., et al.: Experimental research on the hydraulic excitation force on the pump shaft. ASME Paper 81-DET-71Google Scholar
  53. 53.
    Kaupert, K.A.: Unsteady Flow Fields in a High Specific Speed Centrifugal Impeller. Dissertation, ETH, Zürich (1997)Google Scholar
  54. 54.
    Kollmann, F.G.: Maschinenakustik. Grundlagen, Meßtechnik, Beeinflussung. 2. Aufl. Springer, Berlin (2000)CrossRefGoogle Scholar
  55. 55.
    Krieger, P.: Wechselwirkungen von Laufrad und Gehäuse einer Einschaufelpumpe am Modell der instationären Strömung. Forsch. Ing. Wes. 54(6), 169–180 (1988)CrossRefGoogle Scholar
  56. 56.
    Kündig, P.: Gestufte Labyrinthdichtungen hydraulischer Maschinen. Experimentelle Untersuchung der Leckage, der Reibung und der stationären Kräfte. Dissertation, ETH. Nr. 10366 (1993)Google Scholar
  57. 57.
    Kurtze, G.: Physik und Technik der Lärmbekämpfung. Braun, Karlsruhe (1964)zbMATHGoogle Scholar
  58. 58.
    Kwong, A.H.M., Dowling, A.P.: Unsteady flow in diffusers. ASME J. Fluids Eng. 116, 843–847 (1994)CrossRefGoogle Scholar
  59. 59.
    Lucas, M.J., et al.: Handbook of the Acoustic Characteristics of Turbomachinery Cavities. ASME Press, New York (1997)Google Scholar
  60. 60.
    Luce, T.W., et al.: A numerical and LDV investigation of unsteady pressure fields in the vaneless space downstream of a centrifugal impeller. ASME FEDSM97-3327 (1997)Google Scholar
  61. 61.
    Makay, E., Barret, J.A.: Changes in hydraulic component geometries greatly increased power plant availability and reduced maintenance cost: case histories. In: Proceedings of the 1st International Pump Symposium, Houston (1984)Google Scholar
  62. 62.
    Marscher, W.D.: Subsynchronous vibration in boiler feedpumps due to stable response to hydraulic forces at part-load. In: Proceedings of IMechE, vol. 202, pp. 167–175 (1988)Google Scholar
  63. 63.
    Meschkat, S.: Experimentelle Untersuchung der Auswirkung instationärer Rotor-Stator-Wechselwirkungen auf das Betriebsverhalten einer Spiralgehäusepumpe. Dissertation, TU, Darm-stadt (2004)Google Scholar
  64. 64.
    Meschkat, S., Stoffel, B.: The local impeller head at different circumferential positions in a volute casing of a centrifugal pump in comparison to the characteristic of the impeller alone. In: 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne (2002)Google Scholar
  65. 65.
    Naudascher, E., Rockwell, D.: Flow-Induced Vibrations. An Engineering Guide. Balkema, Rotterdam (1994)Google Scholar
  66. 66.
    Nordmann, R., et al.: Rotordynamic coefficients and leakage flow for smooth and grooved seals in turbopumps. In: Proceedings IFToMM Meeting, Tokyo (Sept 1986)Google Scholar
  67. 67.
    Offenhäuser, H.: Druckschwankungsmesssungen an Kreiselpumpen mit Leitrad. VDI. Ber. 193, 211–218 (1973)Google Scholar
  68. 68.
    Reinsch, K.H., Barutzki, F.: Erhöhung der Lebensdauer von Rohrleitungssystemen durch den Einsatz viskoser Dämpfer. Rohrleitungstechnik, 7. Auf., Vulkan-Verlag, EssenGoogle Scholar
  69. 69.
    Robinet, F., Gülich, J.F., Kaiser, T.: Vane pass vibrations—source, assessment and correction—a practical guide for centrifugal pumps. In: 16th International Pump Users Symposium, Houston, pp. 121–137 (1999)Google Scholar
  70. 70.
    Ross, D.: Mechanics of Underwater Noise. Pergamon Press (1976)Google Scholar
  71. 71.
    Rütten, F.: Large eddy simulation in 90°-pipe bend flows. J. Turbul. 2, 003 (2001)CrossRefGoogle Scholar
  72. 72.
    Sano, T., et al.: Alternate blade stall and rotating stall in a vaned diffuser. JSME Int. Ser. B. 45(4), 810–819 (2002)CrossRefGoogle Scholar
  73. 73.
    Schneider, K.: Das Verhalten von Kreiselpumpen beim Auftreten von Druckwellen. Dissertation, TU, Stuttgart (1986)Google Scholar
  74. 74.
    Schwartz, R., Nelson, R.: Acoustic resonance phenomena in high energy variable speed centrifugal pumps. In: 1st International Pump Symposium, Houston, pp. 23–28 (1984)Google Scholar
  75. 75.
    Spirig, M.: Einfluß der Kammerströmung auf die strömungsbedingten Kräfte im endlich langen Spalt einer hydraulischen Labyrinthdichtung. Dissertation, ETH. Nr. 13288 (1999)Google Scholar
  76. 76.
    Storace, A.F., et al.: Unsteady flow and whirl-inducing forces in axial-flow compressors. ASME J. Turbomach. 123, 433–445 (2001)CrossRefGoogle Scholar
  77. 77.
    Storteig, E.: Dynamic characteristics and leakage performance of liquid annular seals in centrifugal pumps. Dissertation, MTA-00-137 TU, Trondheim (2000)Google Scholar
  78. 78.
    Strub, R.A.: Pressure fluctuations and fatigue stresses in storage pumps and pump turbines. ASME Paper No. 63-AHGT-11 (1963)Google Scholar
  79. 79.
    Sudo, S.: Pumping plant noise reduction. Hitachi Rev. 29(5), 217–222 (1980)Google Scholar
  80. 80.
    Tanaka, H.: Vibration behavior and dynamic stress of runners of very high head reversible pump-turbines. In: IAHR. Symposium, Belgrade, Beitrag U2 (1990)Google Scholar
  81. 81.
    Tsujimoto, Y., et al.: Observation of oscillating cavitation in an inducer. ASME J. Fluids. Eng. 119, 775–781 (1997)CrossRefGoogle Scholar
  82. 82.
    Ubaldi, M., et al.: An experimental investigation of stator induced unsteadiness on centrifugal impeller outflow. ASME J. Turbomach. 118, 41–51 (1996)CrossRefGoogle Scholar
  83. 83.
    Verhoeven, J.: Unsteady hydraulic forces in centrifugal pumps. IMechE Paper C348/88 (1988)Google Scholar
  84. 84.
    Warth, H.: Experimentelle Untersuchungen axial durchströmter Ringspalte von Hybridentlastungseinrichtungen. Dissertation, TU Kaiserslautern, SAM Forschungsbericht Bd. 2 (2000)Google Scholar
  85. 85.
    Weaver, D.S.: Interaction of fluid flow and acoustic fields. In: AECL Seminar on Acoustic Pulsations in Rotating Machinery, Toronto (1993)Google Scholar
  86. 86.
    Weber, M.: Geräusch- und pulsationsarme Verbrennungsluftgebläse und deren Einfluß auf selbsterregte Brennkammerschwingungen. Dissertation, TU Kaiserslautern, SAM Forschungsbericht Bd 7 (2002)Google Scholar
  87. 87.
    Yedidiah, S.: Oscillations at low NPSH caused by flow conditions in the suction pipe. ASME Cavitation and Multiphase Flow Forum (1974)Google Scholar
  88. 88.
    Yuasa, T., Hinata, T.: Fluctuating flow behind the impeller of a centrifugal pump. Bull. JSME 22(174), 1746–1753 (1979)CrossRefGoogle Scholar
  89. 89.
    Ziada, S.: Flow-excited resonances of piping systems containing side-branches: excitation mechanism, counter-measures and design guidelines. In: AECL Seminar on acoustic pulsations in rotating machinery, Toronto (1993)Google Scholar
  90. 90.
    Parrondo, J., et al.: The effect of the operating point on the pressure fluctuations at BPF in the volute of a centrifugal pump. ASME JFE 124, 784–790 (2002)Google Scholar
  91. 91.
    Bolleter, U. et al.: Solution to cavitation-induced vibration problems in crude-oil pipeline pumps. In: 8th Pump Users Symposium, Texas A&M (1991)Google Scholar
  92. 92.
    ANSI/HI 9.8 Standard: Pump Intake Design (2012)Google Scholar
  93. 93.
    Rosenberger, H.: Experimental determination of the rotor impacts of axial pumps in intake structures under distorted approach flow. Thesis TU Kaiserslautern. SAM Forschungsbericht Bd 5 (2001)Google Scholar
  94. 94.
    Weinerth, J.: Kennlinienverhalten und Rotorbelastung von axialen Kühlwasserpumpen unter Betriebsbedingungen. Diss TU Kaiserslautern. SAM Forschungsbericht Bd 9 (2004)Google Scholar
  95. 95.
    Schiavello, B., Smith, D.R., Price, S.M.: Abnormal vertical pump suction recirculation problems due to pump-system interaction. In: 21st Pump Users Symposium, Houston, pp. 18–47 (2004)Google Scholar
  96. 96.
    Dupont, P. et al.: CFD analysis of sump flow and its impact on the hydraulic forces acting on the impeller of a vertical pump. In: Rotating Equipment Conference 2008, DüsseldorfGoogle Scholar
  97. 97.
    Krueger, S., et al.: Pump sump CFD for vertical pump. ASME FEDSM2009-78162Google Scholar
  98. 98.
    May, F.: Sulzer Technical Review 3/2015Google Scholar
  99. 99.
    Ohashi, H.: Influence of impeller and diffuser geometries on lateral fluid forces of whirling centrifugal pump impeller. NASA CP 3026, 285–322 (1988)Google Scholar
  100. 100.
    Van Esch, B.P.M.: Performance and radial loading of a mixed-flow pump under non-uniform approach flow. ASME JFE 131 (2009)Google Scholar
  101. 101.
    Untaroiu, A., et al: On the dynamic properties of pump liquid seals. ASME JFE 135 (2013)Google Scholar
  102. 102.
    Gülich, J.F.: Selection criteria for suction impellers of centrifugal pumps. World Pumps, Parts 1 to 3, January, March, April, 2001Google Scholar
  103. 103.
    Manning, T., Serge, D.: River water pump cyclic vibration. In: 29th Pump Users Symposium, Houston (2013)Google Scholar
  104. 104.
    Marscher, W.D.: End users guide to centrifugal pump rotor dynamics. In: 30th Pump Users Symposium, Houston (2014)Google Scholar
  105. 105.
    Marscher, W.D.: The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps. In: IMechE Seminar Radial Loads and Axial Thrust, pp. 17–38 (1986)Google Scholar
  106. 106.
    Sumer, B., Fredsoe, J.: Hydrodynamics Around Cylindrical Structures, Revised Edition (2006)Google Scholar
  107. 107.
    Ohashi, H.: Case study of pump failure due to rotor-stator interaction. Intl J of Rotating Machinery 1, 53–60 (1994)MathSciNetCrossRefGoogle Scholar
  108. 108.
    Corbo, M.A., et al.: Practical use of rotor dynamic analysis to correct a vertical long-shaft pump’s whirl problem. In: 19th Pump Users Symposium, Houston, pp. 107–120 (2002)Google Scholar
  109. 109.
    ISO 13709: Centrifugal Pumps for the Petrochemical Industry, 2nd edn (API 610) (2009)Google Scholar
  110. 110.
    Schneider, A., Conrad, D., Böhle, M.: Lattice Boltzmann simulation of the flow field in pump intakes—a new approach. ASME JFE 137, 031105 (2015)Google Scholar
  111. 111.
    Rebernik, B.: Radialkräfte von Kreiselpumpen mit unterschiedlichen Gehäuseformen. “25 Jahre ASTRÖ”, Aströ, Graz, pp. 55–60 (1979)Google Scholar
  112. 112.
    Boyadjis, P., Onari, M.: Diagnosing and correcting a damaging below-ground column natural frequency in a vertical pump using field testing and FEA. In: 28th Pump Users Symposium, Houston (2012)Google Scholar
  113. 113.
    Nakato, T.: Field-tested solutions to pump vibrations. In: 1st International Symposium on Noise and vibrations, Paris (1993)Google Scholar
  114. 114.
    Schubert, F., Rosenberger, H.: Development of a compact intake chamber for vertical tubular pumps. In: ASCE Joint Conference Water Resources, Minneapolis (2000)Google Scholar
  115. 115.
    Smith, D., Woodward, G.: Vibration analysis of vertical pumps. In: 15th Turbomachinery Symposium Texas A&M, pp. 61–68 (1986)Google Scholar
  116. 116.
    Corley, J.E.: Vibration problems of large vertical pumps and motors. In: 9th Turbomachinery Symposium Texas A&M, pp. 75–82 (1980)Google Scholar
  117. 117.
    Kirst, K.: Experimentelle und numerische Untersuchungen von Zulaufbedingungen vertikaler Pumpsysteme. Dissertation TU Kaisers-lau-tern. SAM Forschungsbericht Bd 22 (2012)Google Scholar
  118. 118.
    Kaiser, T., et al.: Analysis guide for variable-frequency drive operated centrifugal pumps. In: 24th International Pump Users Symposium Texas A&M, pp. 81–106 (2008)Google Scholar
  119. 119.
    Blevins, R.D.: Applied Fluid Dynamics Handbook. Van Nostrand Reinhold, New York (1984)Google Scholar
  120. 120.
    Schäfer, F.: Untersuchung des Einflusses hydraulischer und mechanischer Anregungen auf das Betriebsverhalten einer axialen Rohrgehäusepumpe. Dissertation TU Kaiserslautern. SAM Forschungsbericht Bd 18 (2008)Google Scholar
  121. 121.
    Peters, M.: Fiber-reinforced ceramic bearings for cooling water pump applications. In: IMech 2014 Turbomachinery SymposiumGoogle Scholar
  122. 122.
    Franke, G., et al.: On pressure mode shapes arising from rotor-stator interactions. IAHR WG1-2003 MeetingGoogle Scholar
  123. 123.
    Fischer, R.K., et al.: Contribution to improved understanding of the dynamic behaviour of pump turbines. In: 22nd IAHR Symposium on Hydraulic Machinery and Systems (2004)Google Scholar
  124. 124.
    Buckler, M.: Tutorial on vertical pumps. In: Calgary Pump Symposium (2013)Google Scholar
  125. 125.
    Guo, S., Okamoto, H.: An experimental study on the fluid forces induced by rotor-stator interaction in a centrifugal pump. Int. J. Rotating Mach. 9(2), 135–144 (2003)CrossRefGoogle Scholar
  126. 126.
    Zhang, M., Tsukamoto, H.: Unsteady hydrodynamic forces due to rotor-stator interaction on a diffuser pump with identical number of vanes on the impeller and diffuser. J. Fluid Eng. 127, 743–751 (2005)CrossRefGoogle Scholar
  127. 127.
    Nicolet, C.: Hydro-acoustic modelling and numerical simulation of unsteady operation of hydro-electric systems. Ph.D. thesis EPFL (2007)Google Scholar
  128. 128.
    Gülich, J.F., et al.: Review of parameters influencing hydraulic forces on centrifugal impellers. Proc. IMechE 201(A3), 163–174 (1987)CrossRefGoogle Scholar
  129. 129.
    Smith, D.R., et al.: Centrifugal pump vibration caused by super-synchronous shaft instability. In: 13th International Pump Users Symposium, Houston, pp. 47–69 (1996)Google Scholar
  130. 130.
    Feng, J., Benra, F.K., Dohmen, H.J.: Numerical investigation on pressure fluctuations for different configurations of vaned-diffuser pumps. Int. J. Rotating Mach. (2007)Google Scholar
  131. 131.
    Van Esch, B., Cheng, L.: Unstable operation of a mixed-flow pump and the influence of tip clearance. ASME AJK2011-06016Google Scholar
  132. 132.
    Miyabe, M., et al.: Rotating stall behavior in a diffuser of a mixed-flow pump and its suppression. ASME FEDSM 2008-55132Google Scholar
  133. 133.
    Miyabe, M., et al.: On improvement of characteristic instability and internal flow in mixed-flow pumps. J. Fluid Sci. Technol. 3(6), 732–743 (2008)CrossRefGoogle Scholar
  134. 134.
    Miyabe, M., et al.: Unstable head-flow characteristic generation of a low-specific speed mixed-flow pump. J. Therm. Sci. 15(2), 115-ff (2006)Google Scholar
  135. 135.
    Barrio, E., et al.: The effect of impeller cutback on the fluid-dynamic pulsations and load at blade-passing frequency in a centrifugal pump. ASME JFE 130, 111102 (2008)Google Scholar
  136. 136.
    Botero F et al: Non-intrusive detection of rotating stall in pump-turbine. Mech. syst. signal process. (2014)Google Scholar
  137. 137.
    Figliola, R.S., Beasley, D.E.: Theory and Design for Mechanical Measurement, 5th edn. Wiley, Hoboken (2011)Google Scholar
  138. 138.
    Berten, S.: R&D pump investigations. Technical Review Sulzer, No. 1 (2017)Google Scholar
  139. 139.
    Berten, S., et al.: Experimental and numerical analysis of pressure pulsations and mechanical deformations in a centrifugal pump impeller. ASME AJK2011-06057 (2011)Google Scholar
  140. 140.
    Bradshaw, S., Sabini, E.: Modification of BB1 vibration characteristics to meet ISO 13709 limits. In: Texas A&M Pump Symposium (2011)Google Scholar
  141. 141.
    Berten, S., et al.: Experimental investigation of pressure fluctuations in a high-energy centrifugal pump at off-design conditions. In: IMechE Conference (2014)Google Scholar
  142. 142.
    Zobeiri, A., et al.: How oblique trailing edge of a hydrofoil reduces the vortex-induced vibration. J. Fluids Struct. 32, 78–89 (2012)CrossRefGoogle Scholar
  143. 143.
    Jery, B., et al.: Forces on centrifugal pump impellers. In: Texas A&M Pump Symposium, pp. 21–32 (1985)Google Scholar
  144. 144.
    Franz, R., et al.: The hydrodynamic forces on a centrifugal pump impeller in the presence of cavitation. ASME JFE 112, 264–271 (1990)Google Scholar
  145. 145.
    Jery, B.: Experimental study of unsteady hydrodynamic force matrices on whirling centrifugal pump impellers. Ph.D. thesis, Caltech (1987)Google Scholar
  146. 146.
    Dietzen, F., Nordmann, R.: Calculating rotordynamic coefficients of seals by finite-difference techniques. NASA CP 2443, pp. 77–96 (1986)Google Scholar
  147. 147.
    Fu, D.C., et al.: Impact of impeller stagger angle on pressure fluctuation of double-suction centrifugal pump. Chin J Mech Eng (2018)Google Scholar
  148. 148.
    Bachert, R.: Dreidimensionale, instationäre Effekte kavitierender Strömungen – Analysen an Einzelprofilen und in einer Radialpumpe. Diss. TU Darmstadt, (2004)Google Scholar
  149. 149.
    Lehr, C., Linkamp, A., Brümmer, A.: Abschlussbericht zum Verbundprojekt: Entwicklung von Grundlagen für instationär betriebene hydraulische Pumpsysteme in flexiblen Kraftwerken. TU Dortmund Februar (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.VilleneuveSwitzerland

Personalised recommendations