Advertisement

Exploring the Role of Epigenetics in Cereal and Leguminous Crops Exposed to Abiotic Stress

  • Romesh Kumar Salgotra
  • Mehak Gupta
Chapter

Abstract

Epigenetics affects the gene expression due to chromatin structure changes without involving the DNA sequences. Epigenetic gene expression mechanisms play an important role in abiotic stress tolerance in plants. The mechanisms such as histone modifications, DNA methylation, and noncoding (nc) RNAs are the key elements of the epigenetic regulation machinery which leads to gene activation or gene silencing. Comprehensive literature showed the role of epigenetics controlling specific loci under environmental stresses in various plants. The epigenetic effects can be perceived on various developmental stages of plants in coping with the abiotic stresses. The whole genome-wide studies have led to unveil epigenetic effects of crop plants particularly cereal and legume in the era of high-throughput and next-generation sequencing (NGS) technologies. A number of epigenetics investigations are being carried out in cereals and legumes crops for abiotic stresses such as cold, drought, heat, salinity, etc. This chapter has compiled the latest improvements made in the field of epigenetics related to abiotic stresses focusing on cereal and legume crops. Moreover, development of crop varieties tolerant to abiotic stresses such as drought, cold, heat, high temperature, etc., is essential to sustain the crop productivity.

References

  1. Abid G, Mingeot D, Muhovski Y, Mergeai G, Aouida M, Abdelkarim S, Jebara M (2017) Analysis of DNA methylation patterns associated with drought stress response in faba bean (Vicia faba L.) using methylation-sensitive amplification polymorphism (MSAP). Environ Exp Bot 142:34–44CrossRefGoogle Scholar
  2. Allis CD, Jenuwein T (2015) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500CrossRefGoogle Scholar
  3. Angers B, Castonguay E, Massicotte R (2010) Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol 19(7):1283–1295PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35: 146–189CrossRefGoogle Scholar
  5. Arzani A, Ashraf M (2017) Cultivated ancient wheats (Triticum spp.): a potential source of health-beneficial food products. Comp Rev Food Sci Food Saf 16:477–488CrossRefGoogle Scholar
  6. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396PubMedPubMedCentralCrossRefGoogle Scholar
  7. Banerjee A, Roychoudhury A (2017) Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation. Plant Gene 11:199–204CrossRefGoogle Scholar
  8. Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu J, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bennetzen JL, Hake SC (2009) Handbook of Maize: genetics and genomics. SpringerGoogle Scholar
  10. Berger F, Chaudhury A (2009) Parental memories shape seeds. Trends Plant Sci 14(10):550–556PubMedCrossRefPubMedCentralGoogle Scholar
  11. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412CrossRefGoogle Scholar
  12. Bhardwaj J, Mahajan M, Yadav SK (2013) Comparative analysis of DNA methylation polymorphism in drought sensitive (HPKC2) and tolerant (HPK4) genotypes of horse gram (Macrotyloma uniflorum). Biochem Genet 51:493–502PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bocchini M, Bartucca ML, Ciancaleoni S, Mimmo T, Cesco S, Pii Y et al (2015) Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation. Front Plant Sci 6:514PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bologna NG (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503CrossRefGoogle Scholar
  15. Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173(6):603–608CrossRefGoogle Scholar
  17. Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci U S A 97(9):4979–4984PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen M, Lv S, Meng Y (2010) Epigenetic performers in plants. Develop Growth Differ 52(6):555–566CrossRefGoogle Scholar
  19. Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen X, Zhou D-X (2013) Rice epigenomics and epigenetics: challenges and opportunities. Curr Opin Plant Biol 16(2):164–169PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12(2):133–139PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219CrossRefPubMedPubMedCentralGoogle Scholar
  23. Deng X, Song X, Wei L, Liu C (2016) Epigenetic regulation and epigenomic landscape in rice. Nat Sci Rev 3:309–327CrossRefGoogle Scholar
  24. Ding B, Bellizzi MR, Ning Y, Meyers BC, Wang GL (2012) HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell 24(9):3783–3794PubMedPubMedCentralCrossRefGoogle Scholar
  25. Engelhorn J, Blanvillain R, Carles CC (2014) Gene activation and cell fate control in plants: a chromatin perspective. Cell Mol Life Sci 71:3119–3137PubMedCrossRefPubMedCentralGoogle Scholar
  26. Fang H, Liu X, Thorn G, Duan J, Tian L (2014) Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Biophys Res Commun 443:400–405CrossRefGoogle Scholar
  27. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627PubMedPubMedCentralCrossRefGoogle Scholar
  28. Feng SJ, Liu XS, Tao H, Tan SK, Chu SS, Oono Y, Zhang XD, Chen J, Yang ZM (2016) Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Plant Cell Environ 39:2629–2649PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ferdous J, Sanchez-Ferrero JC, Langridge P, Milne L, Chowdhury J, Brien C, Tricker PJ (2016) Differential expression of microRNAs and potential targets under drought stress in barley. Plant Cell Environ 40:11–24PubMedCrossRefPubMedCentralGoogle Scholar
  30. Forderer A, Zhou Y, Turck F (2016) The age of multiplexity: recruitment and interactions of Polycomb complexes in plants. Curr Opin Plant Biol 29:169–178PubMedCrossRefPubMedCentralGoogle Scholar
  31. Fortes A, Gallusci P (2017) Plant stress responses and phenotypic plasticity in the epigenomics era: perspectives on the grapevine scenario, a model for perennial crop plants. Front Plant Sci 8:82PubMedPubMedCentralGoogle Scholar
  32. Fujimoto R, Sasaki T, Ishikawa R, Osabe K, Kawanabe T, Dennis ES (2012) Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 13(8):9900–9922PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gallusci P, Hodgman C, Teyssier E, Seymour GB (2016) DNA methylation and chromatin regulation during fleshy fruit development and ripening. Front Plant Sci 7:807PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gao P, Bai X, Yang L, Lv D, Li Y, Cai H et al (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231:991–1001PubMedCrossRefGoogle Scholar
  35. Garg R, Narayana Chevala V, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:14922PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gehring M, Henikoff S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta 1769:276–286PubMedCrossRefGoogle Scholar
  37. Geyer KK, Rodríguez López CM, Heald J, Wilkinson MJ, Hoffmann KF (2011) Cytosine methylation regulates oviposition in the pathogenic blood fluke Schistosoma mansoni. Nat Commun 9:424–434CrossRefGoogle Scholar
  38. Hajyzadeh M, Turktas M, Mahmood K, Unver T (2015) miR408 overexpression causes increased drought tolerance in chickpea. Gene 555:186–193PubMedCrossRefGoogle Scholar
  39. He X-J, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21(3):442–465PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hewezi T, Pantalone V, Bennett M, Stewart CN, Burch-Smith TM (2017) Phytopathogen-induced changes to plant methylomes. Plant Cell Rep.  https://doi.org/10.1007/s00299-017-2188-yPubMedCrossRefGoogle Scholar
  41. Hu Y, Zhang L, He S, Huang M, Tan J, Zhao L, Yan S, Li H, Zhou K, Liang Y et al (2012) Cold stress selectively unsilences tandem repeats in heterochromatin associated with accumulation of H3K9ac. Plant Cell Environ 35:2130–2142CrossRefGoogle Scholar
  42. Ivashuta S, Naumkina M, Gau M, Uchiyama K, Isobe S, Mizukami Y, Shimamoto Y (2002) Genotype-dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa). Plant J 31:615–627PubMedCrossRefGoogle Scholar
  43. Jagadish SVK, Septiningsih EM, Kohli A, Thomson MJ, Ye C et al (2012) Genetic advances in adapting rice to a rapidly changing climate. J Agron Crop Sci 198(5):360–373CrossRefGoogle Scholar
  44. Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484PubMedCrossRefGoogle Scholar
  45. Kapazoglou A, Drosou V, Argiriou A, Tsaftaris AS (2013) The study of a barley epigenetic regulator, HvDME, in seed development and under drought. BMC Plant Biol 13:172PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kou HP, Li Y, Song XX et al (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J Plant Physiol 168(14):1685–1693PubMedCrossRefGoogle Scholar
  47. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kumar S, Bhat V (2014) Application of omics technologies in forage crop improvement. In: Barh D (ed) Omics applications in crop science. CRC Press, pp 523–548Google Scholar
  49. Kumar S, Singh A (2016) Epigenetic regulation of abiotic stress tolerance in plants. Adv Plants Agric Res 5:00179.  https://doi.org/10.15406/apar.2016.05.00179CrossRefGoogle Scholar
  50. Kumar S, Beena AS, Awana M, Singh A (2017) Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant Sci 8:1151PubMedPubMedCentralCrossRefGoogle Scholar
  51. Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol 4:694–699CrossRefGoogle Scholar
  52. Lanciano S, Mirouze M (2017) DNA methylation in rice and relevance for breeding. Epigenomes 1(2):10CrossRefGoogle Scholar
  53. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220PubMedPubMedCentralCrossRefGoogle Scholar
  54. Le TN, Schumann U, Smith NA, Tiwari S, Au PCK, Zhu QH et al (2014) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 15(9):458PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lee RC, Feinbaum RL, Ambros V, Feinbaum A (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedPubMedCentralCrossRefGoogle Scholar
  56. Li JY, Wang J, Zeigler RS (2014a) The 3,000 rice genomes project: new opportunities and challenges for future rice research. Giga Sci 3(1):8CrossRefGoogle Scholar
  57. Li Q, Eichten SR, Hermanson PJ, Zaunbrecher VM, Song J, Wendt J et al (2014b) Genetic perturbation of the maize methylome. Plant Cell 26(12):4602–4616PubMedPubMedCentralCrossRefGoogle Scholar
  58. Li KK, Luo C, Wang D, Jiang H, Zheng YG (2012) Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 32(4):815–867PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lu X, Chen D, Shu D, Zhang Z, Wang W, Klukas C et al (2013) The differential transcription network between embryo and endosperm in the early developing maize seed. Plant Physiol 162(1):440–455PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lu X, Wang W, Ren W, Chai Z, Guo W, Chen R et al (2015) Genome-wide epigenetic regulation of gene transcription in maize seeds. PLoS ONE 10(10):e0139582.  https://doi.org/10.1371/journal.pone.0139582CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lv D, Bai X, Li Y, Ding X, Ge Y, Cai H et al (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47PubMedCrossRefGoogle Scholar
  62. Maiti RK, Satya P (2014) Research advances in major cereal crops for adaptation to abiotic stresses. GM Crops Food 5(4):259–279PubMedPubMedCentralCrossRefGoogle Scholar
  63. Maxwell EK, Ryan JF, Schnitzler CE, Browne WE, Baxevanis AD (2012) MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics 13(1):714–723PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mayer BF, Ali-Benali MA, Demone J, Bertrand A, Charron JB (2014) Cold acclimation induces distinctive changes in the chromatin state and transcript levels of COR genes in Cannabis sativa varieties with contrasting cold acclimation capacities. Physiol Plant 155:281–295CrossRefGoogle Scholar
  65. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double stranded RNA. Nature 431:343–349CrossRefGoogle Scholar
  66. Meyer P (2015) Epigenetic variation and environmental change. J Exp Bot 66:3541–3548PubMedCrossRefPubMedCentralGoogle Scholar
  67. Meyer P, Siwo G, Zeevi D, Sharon E, Norel R, Segal E, Stolovitzky G (2013) Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach. Genome Res 23(11):1928–37PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274PubMedPubMedCentralCrossRefGoogle Scholar
  69. Moritoh S, Eun CH, Ono A, Asao H, Okano Y et al (2012) Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J 71(1):85–98PubMedCrossRefGoogle Scholar
  70. Mosher RA, Schwach F, Studholme D, Baulcombe DC (2008) PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. PNAS 105:3145–3150PubMedCrossRefGoogle Scholar
  71. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514):110–113PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129PubMedCrossRefPubMedCentralGoogle Scholar
  73. Niederhuth CE, Schmitz RJ (2017) Putting DNA methylation in context: from genomes to gene expression in plants. Biochim Biophys Acta Gene Regul Mech 1860(1):149–156PubMedCrossRefPubMedCentralGoogle Scholar
  74. Oosten MJV, Bressan RA, Zhu JK, Bohnert HJ, Chinnusamy V (2014) The role of the epigenome in gene expression control and the epimark changes in response to the environment. Crit Rev Plant Sci 33(1):64–87CrossRefGoogle Scholar
  75. Ou X, Zhang Y, Xu C et al (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS ONE 7(9):Article ID e41143PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pang J, Dong M, Li N, Zhao Y, Liu B (2013) Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast. Biochem Biophys Res Commun 432(1):157–162PubMedCrossRefPubMedCentralGoogle Scholar
  77. Peng H, Zhang J (2009) Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding. Prog Nat Sci 19(9):1037–1045CrossRefGoogle Scholar
  78. Richards EJ (2011) Natural epigenetic variation in plant species: a view from the field. Curr Opin Plant Biol 14(2):204–209CrossRefGoogle Scholar
  79. Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolytes concentration. Plant Sci 163:1037–1046CrossRefGoogle Scholar
  80. Santos AP, Ferreira L, Maroco J, Oliveira MM (2011) Abiotic stress and induced DNA hypomethylation cause interphase chromatin structural changes in rice rDNA loci. Cytogenet Genome Res 132:297–303PubMedPubMedCentralCrossRefGoogle Scholar
  81. Shan X, Wang X, Yang G, Wu Y, Su S, Li S et al (2013) Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. J Plant Biol 56:32–38CrossRefGoogle Scholar
  82. Singh A, Bhushan B, Gaikwad K, Yadav OP, Kumar S et al (2015) Induced defence responses of contrasting bread wheat genotypes under differential salt stress imposition. Indian J Biochem Biophys 52(1):75–85PubMedPubMedCentralGoogle Scholar
  83. Song QX, Lu X, Li QT, Chen H, Hu XY, Ma B, Zhang WK, Chen SY, Zhang JS (2013) Genome-wide analysis of DNA methylation in soybean. Mol Plant 6:1961–1974PubMedCrossRefPubMedCentralGoogle Scholar
  84. Song X, Cao X (2017) Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr Opin Plant Biol 36:111–118PubMedCrossRefPubMedCentralGoogle Scholar
  85. Sosa-valencia G, Palomar M, Covarrubias AA, Reyes JL (2016) The Legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought. J Exp Bot 68:2013–2026Google Scholar
  86. Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746CrossRefGoogle Scholar
  87. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  88. Surdonja K, Eggert K, Hajirezaei MR, Harshavardhan VT, Seiler C, von Wirén N, Kuhlmann M (2017) Increase of DNA methylation at the HvCKX2.1 promoter by terminal drought stress in Barley. Epigenomes 1(2):9CrossRefGoogle Scholar
  89. Sweatt JD (2013) The emerging field of neuroepigenetics. Neuron 80(3):624–632PubMedCrossRefPubMedCentralGoogle Scholar
  90. Tan F, Zhou C, Zhou Q, Zhou S, Yang W et al (2016) Analysis of chromatin regulators reveals specific features of rice DNA methylation pathways. Plant Physiol 171(3):2041–2054PubMedPubMedCentralCrossRefGoogle Scholar
  91. Tan M (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48(1):21–26PubMedCrossRefPubMedCentralGoogle Scholar
  92. Tani E, Polidoros AN, Nianiou–Obeidat I et al (2005) DNA methylation patterns are differently affected by planting density in maize inbreds and their hybrids. Maydica 50:19–23Google Scholar
  93. Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003PubMedPubMedCentralCrossRefGoogle Scholar
  94. Vlasova A, Capella-Gutierrez S, Rendon-Anaya M et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32PubMedPubMedCentralCrossRefGoogle Scholar
  95. Waddington CH (1942) The epigenotype. Endeavour 1:18–20.  https://doi.org/10.1093/ije/dyr184CrossRefGoogle Scholar
  96. Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S et al (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557(7703):43–49PubMedCrossRefPubMedCentralGoogle Scholar
  97. Wang X, Xin C, Cai J, Zhou Q, Dai T, Cao W, Jiang D (2016) Heat priming induces trans-generational tolerance to high temperature stress in wheat. Front Plant Sci 7:501PubMedPubMedCentralGoogle Scholar
  98. Wassenegger M, Heimes S, Riedel L, Sänger H (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76(3):567–576CrossRefGoogle Scholar
  99. Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh CT, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM (2011) Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 23:4221–4233PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wei R, Qiu D, Wilson IW, Zhao H, Lu S, Miao J, Feng S (2015) Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC Genomics 16:835–844PubMedPubMedCentralCrossRefGoogle Scholar
  101. Weinhold A (2018) Transgenerational stress adaption—an opportunity for ecological epigenetics. Plant Cell Rep.  https://doi.org/10.1007/s00299-017-2216-yPubMedCrossRefPubMedCentralGoogle Scholar
  102. Wendte JM, Pikaard CS (2017) The RNAs of RNA-directed DNA methylation. Biochim Biophys Acta 1860(1):140–148CrossRefGoogle Scholar
  103. Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J et al (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. Elife 5:e13546PubMedPubMedCentralCrossRefGoogle Scholar
  104. Xu C, Tian J, Mo B (2013) siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein Cell 4(9):656–663PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yan Y, Zhang Y, Yang K, Sun Z, Fu Y, Chen X et al (2011) Small RNAs from MITE derived stem-loop precursors regulates abscisic acid signaling and abiotic stress responses in rice. Plant J 65:820–828PubMedCrossRefPubMedCentralGoogle Scholar
  106. Yang C, Li D, Mao D, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–2218Google Scholar
  107. Yang X, Niu L, Zhang W, Yang J, Xing G, He H, Guo D, Du Q, Qian X, Yao Y, Li Q (2017) RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Plant Cell Rep.  https://doi.org/10.1007/s00299-017-2186-0PubMedCrossRefPubMedCentralGoogle Scholar
  108. Zeller G, Henz SR, Widmer CK, Sachsenberg T, Ratsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082PubMedCrossRefPubMedCentralGoogle Scholar
  109. Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328(5980):916–919CrossRefGoogle Scholar
  110. Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD et al (2010a) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA 107(43):18729–18734PubMedCrossRefPubMedCentralGoogle Scholar
  111. Zhang CY, Wang NN, Zhang YH, Feng QZ, Yang CW, Liu B (2013) DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa). Genet Mol Res 12:1269–1277PubMedCrossRefPubMedCentralGoogle Scholar
  112. Zhang H, Lang Z, Zhu JK (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19(8):489–506PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zhang M, Xu C, Von Wettstein D, Liu B (2011) Tissue-specific differences in cytosine methylation and their association with differential gene expression in Sorghum. Plant Physiol 156:1955–1966PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zheng X, Chen L, Xia H, Wei H, Lou Q, Li M, Li T, Luo L (2017) Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep 7:39843PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zong W, Zhong X, You J, Xiong L (2013) Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol 81:175–188PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J et al (2013) Singlebase resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31(2):154–159PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zhu QH, Shan WX, Ayliffe MA, Wang MB (2015) Epigenetic mechanisms: An emerging player in plant-microbe interactions. Mol Plant-Microbe Interact 29(3):187–196CrossRefGoogle Scholar
  119. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61 (15):4157–4168PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Romesh Kumar Salgotra
    • 1
  • Mehak Gupta
    • 1
  1. 1.School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of JammuJammuIndia

Personalised recommendations