Cellulose as a Potential Feedstock for Cellulose Enzyme Production

  • Soni Tiwari
  • Tuhina Verma
Part of the Fungal Biology book series (FUNGBIO)


Cellulose is a rich natural biopolymer on earth, found as a chief component of plant cell wall in lignocellulosic form. Unlike other compounds cellulose is not easily soluble in water; therefore enzymatic conversion of cellulose has become a key technology for biodegradation of lignocellulosic materials. Microorganisms such as aerobic bacteria, fungi, yeast, and actinomycetes produce cellulase that degrades cellulose by hydrolyzing the β-1,4-glycosidic linkages of cellulose (Fig. 6.1). In contrast to aerobic bacteria, anaerobic bacteria lack the ability to effectively penetrate into the cellulosic material which leads to the development of complexed cellulase systems called cellulosome. Microbial cellulases have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Due to the complexity of enzyme system and immense industrial potential, cellulases have been a potential candidate for research by both the academic and industrial research groups. Nowadays, significant attentions have been devoted to the current knowledge of cellulase production and the challenges in cellulase research especially in the direction of improving the process economics of various industries.


Cellulose Cellulases Lignocellulosic materials Bioploymer Bioenergy 



Authors acknowledge the Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Faizabad, Uttar Pradesh, India, and Government of Uttar Pradesh, India, for awarding the center of excellence to the department.


  1. Abdulla HM, El-Shatoury SA (2007) Actinomycetes in rice straw decomposition. Waste Manag 27(6):850–853PubMedCrossRefGoogle Scholar
  2. Akhtar M (1994) Biochemical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora. Holzforschung 48:199–202CrossRefGoogle Scholar
  3. Ali S, Hall J, Soole KL et al (1995) Targeted expression of microbial cellulases in transgenic animals. In: Petersen SB, Svensson B, Pedersen S (eds) Carbohydrate bioengineering, vol 10 of progress in biotechnology. Elsevier, Amsterdam, pp 279–293CrossRefGoogle Scholar
  4. Bailey BA, Lumsden RD (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In: Harman GF, Kubicek CP (eds) Trichoderma & gliocladium—enzymes, vol 2 of biological control and commercial applications. Taylor & Francis, London, pp 327–342Google Scholar
  5. Baker RA, Wicker L (1996) Current and potential applications of enzyme infusion in the food industry. Trends Food Sci Technol 7(9):279–284CrossRefGoogle Scholar
  6. Baker JO, McCarley JR, Lovett R et al (2005) Catalytically enhanced endocellulase Cel5A from Acidothermus cellulolyticus. Appl Biochem Biotechnol A 121(1–3):129–148CrossRefGoogle Scholar
  7. Bamforth CW (2009) Current perspectives on the role of enzymes in brewing. J Cereal Sci 50(3):353–357CrossRefGoogle Scholar
  8. Bassi R, Pineau B, Dainese P et al (1993) Carotenoid-binding proteins of photosystem II. Eur J Biochem 212(2):297–303PubMedCrossRefGoogle Scholar
  9. Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 16:552–559Google Scholar
  10. Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237–245PubMedCrossRefGoogle Scholar
  11. Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58PubMedCrossRefGoogle Scholar
  12. Bernardez TD, Lyford K, Hogsett DA et al (1993) Adsorption of Clostridium thermocellum cellulases onto pretreated mixed hardwood, Avicel, and lignin. Biotechnol Bioeng 42(7):899–907PubMedCrossRefGoogle Scholar
  13. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bowen RM, Harper SHT (1990) Decomposition of wheat straw and related compounds by fungi isolated from straw in arable soils. Soil Biol Biochem 22(3):393–399CrossRefGoogle Scholar
  15. Bronnenmeier K, Rucknagel KP, Staudenbauer WL (1991) Purification and properties of a novel type of exo-1,4-betaglucanase (Avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem 200(2):379–385PubMedCrossRefGoogle Scholar
  16. Buchert J, Oksanen T, Pere J, Siika-aho M, Suurnakki A, Viikari L (1998) Applications of Trichoderma reesei enzymes in the pulp and paper industry. In: Harman GF, Kubicek CP (eds) Trichoderma & gliocladium—enzymes, vol 2 of biological control and commercial applications, pp 343–363Google Scholar
  17. Canales AM, Garza R, Sierra JA et al (1988) The application of beta-glucanase with additional side activities in brewing. MBAA Tech Q 25:27–31Google Scholar
  18. Chet I, Benhamou N, Haran S (1998) Mycoparatism and lytic enzymes. In: Harman GF, Kubicek CP (eds) Trichoderma and Gliocladium—enzymes, vol 2 of biological control and commercial applications. Taylor & Francis, London, pp 327–342Google Scholar
  19. Chiacchierini E, Mele G, Restuccia D, Vinci G (2007) Impact evaluation of innovative and sustainable extraction technologies on olive oil quality. Trends Food Sci Technol 18(6):299–305CrossRefGoogle Scholar
  20. Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71(5):2412–2417PubMedPubMedCentralGoogle Scholar
  21. Cortez JM, Ellis J, Bishop DP (2002) Using cellulases to improve the dimensional stability of cellulosic fabrics. Text Res J 72(8):673–680CrossRefGoogle Scholar
  22. Cowan WD (1996) Animal feed. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 360–371Google Scholar
  23. de Carvalho LMJ, de Castro IM, da Silva CAB (2008) A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro- and ultra-filtration. J Food Eng 87(4):447–454CrossRefGoogle Scholar
  24. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859PubMedCrossRefGoogle Scholar
  25. De Faveri D, Aliakbarian B, Avogadro M, Perego P, Converti A (2008) Improvement of olive oil phenolics content by means of enzyme formulations: effect of different enzyme activities and levels. Biochem Eng J 41(2):149–156CrossRefGoogle Scholar
  26. Devillard E, Goodheart DB, Karnati SKR et al (2004) Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J Bacteriol 186:136–145PubMedPubMedCentralCrossRefGoogle Scholar
  27. DeVries RP, Visser J (2001) Aspergillus enzymes involved in plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522CrossRefGoogle Scholar
  28. Dhiman TR, Zaman MS, Gimenez RR et al (2002) Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Anim Feed Sci Technol 101(1–4):115–125CrossRefGoogle Scholar
  29. Dienes D, Egyhazi A, Reczey K (2004) Treatment of recycled fiber with Trichoderma cellulases. Ind Crop Prod 20(1):11–21CrossRefGoogle Scholar
  30. Dourado F, Bastos M, Mota M et al (2002) Studies on the properties of Celluclast/Eudragit L-100 conjugate. J Biotechnol 99(2):121–131PubMedCrossRefPubMedCentralGoogle Scholar
  31. Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin/Heidelberg, pp 1–407Google Scholar
  32. Fantozzi P, Petruccioli G, Montedoro G (1977) Trattamenti con additivi enzimatici alle paste di oliva sottoposte ad estrazione per pressione unica: influenze delle cultivars, dell’epoca di raccolta e della conservazione. Grasse 54:381–388Google Scholar
  33. Fennema OW (1985) Food chemistry. Marcel Dekker, New YorkGoogle Scholar
  34. Fontaine S, Bardoux G, Benest D et al (2004) Mechanisms of the priming effect in a Savannah soil amended with cellulose. Soil Sci Soc Am J 68(1):125–131CrossRefGoogle Scholar
  35. Fortun-Lamothe L, Gidenne T, Debray L, et al 2001 Intake regulation, performances and health status according to feeding strategy around weaning. In: Proceedings of the second meeting of COST 848 working group 4, Gödöllő, pp 40–41Google Scholar
  36. Galante YM, DeConti A, Monteverdi R (1998) Application of Trichoderma enzymes in food and feed industries. In: Harman GF, Kubicek CP (eds) Trichoderma and Gliocladium—enzymes, vol 2 of biological control and commercial applications. Taylor & Francis, London, pp 311–326Google Scholar
  37. Gavrilescu M, Nicu M (2004) Source reduction and waste minimization. Ecozone Press, IasiGoogle Scholar
  38. Ghosh P, Singh A (1993) Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass. Adv Appl Microbiol 39:295–333CrossRefGoogle Scholar
  39. Gilligan W, Reese ET (1954) Evidence for multiple components in microbial cellulases. Can J Microbiol 1:90–107PubMedCrossRefGoogle Scholar
  40. Godfrey T, West S (1996) Textiles. In: Industrial enzymology, 2nd edn. Macmillan Press, London, pp 360–371Google Scholar
  41. Graham H, Balnave D (1995) Dietary enzymes for increasing energy availability. In: Wallace RJ, Chesson A (eds) Biotechnology in animal feeds and animal feedings. VHC, Weinheim, pp 296–309Google Scholar
  42. Grassin C, Fauquembergue P (1996) Fruit juices. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 226–264Google Scholar
  43. Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100(3):1214–1220PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gupta R, Mehta G, Khasa YP et al (2010) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22(4):797–804PubMedCrossRefGoogle Scholar
  45. Gupta R, Khasa YP, Kuhad RC (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym 84:1103–1109CrossRefGoogle Scholar
  46. Harman GE, Bjorkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol 2. Taylor & Francis, London, pp 229–265Google Scholar
  47. Hebeish A, Ibrahim NA (2007) The impact of frontier sciences on textile industry. Colourage 54:41–55Google Scholar
  48. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. J Biochem 280(Pt 2):309–316CrossRefGoogle Scholar
  49. Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10:358–364PubMedCrossRefGoogle Scholar
  50. Hsu JC, Lakhani NN (2002) Method of making absorbed tissue from recycled waste paper. US Patent 6413363Google Scholar
  51. Ibrahim NA, El-Badry K, Eid BM et al (2011) A new approach for biofinishing of cellulose-containing fabrics using acid cellulases. Carbohydr Polym 83(1):116–121CrossRefGoogle Scholar
  52. Inar IC (2005) Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochem 40(2):945–949CrossRefGoogle Scholar
  53. Irwin DC, Zhang S, Wilson DB (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267:4988–4997PubMedCrossRefGoogle Scholar
  54. John F, Monsalve G, Medina PIV et al (2006) Ethanol production of banana shell and cassava starch. Dyna Universidad Nacional de Colombia 73:21–27Google Scholar
  55. Kakiuchi M, Isui A, Suzuki K et al (1998) Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J Bacteriol 180:4303–4308PubMedPubMedCentralGoogle Scholar
  56. Kantelinen A, Jokinen O, Sarkki ML, et al (1995) Effects of enzymes on the stability of colloidal pitch. In: Proceedings of the 8th international symposium on wood and pulping chemistry 1, Helsinki, pp 605–612Google Scholar
  57. Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41–53CrossRefGoogle Scholar
  58. Karnis A (1995) The role of latent and delatent mechanical pulp fines in sheet structure and pulp properties. Paperi Ja PuuPaper Timber 77:491–497Google Scholar
  59. Kibblewhite RP, Bawden AD, Brindley CL (1995) TMP fiber and fines qualities of 13 radiata pine wood types. APPITA 48:367–377Google Scholar
  60. Koivula A, Ruohonen L, Wohlfahrt G et al (2002) The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. J Am Chem Soc 124:10015–10024PubMedCrossRefGoogle Scholar
  61. Kruus K, Wang WK, Ching J et al (1995) Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol 177:1641–1644PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13(2):151–172CrossRefGoogle Scholar
  63. Kuhad RC, Singh A, Eriksson KE (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125PubMedPubMedCentralGoogle Scholar
  64. Kuhad RC, Manchanda M, Singh A (1999) Hydrolytic potential of extracellular enzymes from a mutant strain of Fusarium oxysporum. Bioprocess Eng 20(2):133–135Google Scholar
  65. Kuhad RC, Gupta R, Khasa YP et al (2010a) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101(21):8348–8354PubMedCrossRefGoogle Scholar
  66. Kuhad RC, Gupta R, Khasa YP (2010b) Bioethanol production from lignocellulosic biomass: an overview. In: Lal B (ed) Wealth from waste. Teri Press, New DelhiGoogle Scholar
  67. Kumar R, Wyman CE (2009) Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 102(6):1544–1557PubMedCrossRefGoogle Scholar
  68. Kvesitadze G, Gogilashvidi L, Svaondize P et al (1986) Exogeneous celluloses of thermophilic micromycetes. II. Thermo stability of enzyme preparations. Acta Biotechnol 6:361–367CrossRefGoogle Scholar
  69. Lee D, Yu AHC, Saddler JN (1995) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 45(4):328–336PubMedCrossRefGoogle Scholar
  70. Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426PubMedCrossRefGoogle Scholar
  71. Lewis GE, Hunt CW, Sanchez WK et al (1996) Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J Anim Sci 74(12):3020–3028PubMedCrossRefGoogle Scholar
  72. Li Y, Wilson DB (2008) Chitin binding by Thermobifida fusca cellulase catalytic domains. Biotechnol Bioeng 100:644–652PubMedCrossRefGoogle Scholar
  73. Liu CC, Doi RH (1998) Properties of exgS, a gene for a major subunit of the Clostridium cellulovorans cellulosome. Gene 211:39–47PubMedCrossRefGoogle Scholar
  74. Ljundahl LG, Eriksson KE (1985) Ecology of microbial cellulease degradation. In: Marshall KC (ed) Advances in microbial ecology. Plenum Press, New York, pp 237–299CrossRefGoogle Scholar
  75. Lorito M, Hayes CK, Di Pietro A et al (1994) Purification, characterization, and synergistic activity of a glucan 1,3-beta-glucosidase and an N-acetylbeta-glucosaminidase from Trichoderma harzianum. Phytopathology 84(4):398–405CrossRefGoogle Scholar
  76. Lynd LR, Weimer PJ, Van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lynd LR, Laser MS, Bransby D et al (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172PubMedCrossRefGoogle Scholar
  78. Maheswari R, Bharadwaz G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–468CrossRefGoogle Scholar
  79. Mai C, Kues U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63(5):477–494PubMedCrossRefGoogle Scholar
  80. Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1(2):105–114CrossRefGoogle Scholar
  81. Mansfield SD, Wong KKY, De Jong E et al (1996) Modification of Douglas-fir mechanical and Kraft pulps by enzyme treatment. TAPPI J 79(8):125–132Google Scholar
  82. Marlatt C, Ho CT, Chien M (1992) Studies of aroma constituents bound as glycosides in tomato. J Agric Food Chem 40(2):249–252CrossRefGoogle Scholar
  83. McBee RH (1959) The anaerobic thermophilic cellulolytic bacteria. Bacteriol Rev 14:51–63Google Scholar
  84. McKendry P (2002) Energy production from biomass: overview of biomass. Bioresour Technol 83:37–43PubMedCrossRefGoogle Scholar
  85. Mejia-Castillo T, Hidalgo-Lara ME, Brieba LG et al (2008) Purification, characterization and modular organization of a cellulose-binding protein, CBP105, a processive beta-1,4-endoglucanase from Cellulomonas flavigena. Biotechnol Lett 30:681–687PubMedCrossRefGoogle Scholar
  86. Milala EA, Onyenekwe PC, Ameh DA, et al (2000) Cellulase production from sorghum bran by Aspergillus niger SL:1: an assessment of pretreatment methods. In: Proceedings of the international conference on biotechnology: commercialization and food security (ICBCFS ’00), Abuja, pp 153–159Google Scholar
  87. Milala MA, Shugaba A, Gidado A et al (2005) Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Research Journal of Agriculture and Biological Science 1:325–328Google Scholar
  88. Minussi RC, Pastore GM, Duran N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13(6–7):205–216CrossRefGoogle Scholar
  89. Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production. #Contents
  90. Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686PubMedPubMedCentralCrossRefGoogle Scholar
  91. Murray WD, Sowden LC, Colvin JR (1984) Bacteroides cellulosolvens sp. nov. a cellulolytic species from sewage sludge. Int J Syst Bacteriol 34:185–187CrossRefGoogle Scholar
  92. Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4:16CrossRefGoogle Scholar
  93. OECD (1998) Biotechnology for clean industrial products and processes. Towards industrial sustainability. OECD, ParisCrossRefGoogle Scholar
  94. Oksanen J, Ahvenainen J, Home S (1985) Microbial cellulase for improving filterability of wort and beer. In: Proceedings of the 20th European Brewery Chemistry Congress, Helsinki, pp 419–425Google Scholar
  95. Ortiz Escobar ME, Hue NV (2008) Temporal changes of selected chemical properties in three manure—amended soils of Hawaii. Bioresour Technol 99(18):8649–8654PubMedCrossRefGoogle Scholar
  96. Ory R, St. Angelo AJ (1977) Enzymes in food and beverage processing. American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  97. Parsiegla G, Reverbel C, Tardif C et al (2008) Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. J Mol Biol 375:499–510PubMedCrossRefGoogle Scholar
  98. Pascual JJ (2001) Recent advances on early weaning and nutrition around weaning. In: Proceedings of the 2nd meeting of COST 848 working group 4, Gödöllő, pp 31–36Google Scholar
  99. Paulo AC, Gubitz GM (2003) Textile processing with enzymes. Woodhead, CambridgeCrossRefGoogle Scholar
  100. Pazarlioglu NK, Sariisik M, Telefoncu A (2005) Treating denim fabrics with immobilized commercial cellulases. Process Biochem 40(2):767–771CrossRefGoogle Scholar
  101. Pere J, Siika-aho M, Buchert J et al (1995) Effects of purified T. reesei cellulases on the fiber properties of Kraft pulp. TAPPI J 78(6):71–78Google Scholar
  102. Pere J, Puolakka A, Nousiainen P et al (2001) Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J Biotechnol 89(2–3):247–255PubMedCrossRefGoogle Scholar
  103. Prassad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recyc 50:1–39CrossRefGoogle Scholar
  104. Rai P, Majumdar GC, Das GS et al (2007) Effect of various pretreatment methods on permeate flux and quality during ultrafiltration of mosambi juice. J Food Eng 78(2):561–568CrossRefGoogle Scholar
  105. Ranalli A, Pollastri L, Contento S et al (2003) Enhancing the quality of virgin olive oil by use of a new vegetable enzyme extract during processing. Eur Food Res Technol 216(2):109–115CrossRefGoogle Scholar
  106. Reese ET, Mandels M (1971) Enzymatic degradation. In: Bikaies NM, Segal L (eds) Cellulase and cellulose derivatives. Part 5. Wiley Interscience, New York, pp 1079–1094Google Scholar
  107. Reese ET, Siu RGH, Levin MS (1950) The biological degradation of soluble cellulase derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497PubMedPubMedCentralGoogle Scholar
  108. Reverbel-Leroy C, Pages S, Belaich A et al (1997) The processive endoglucanase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179:46–52PubMedPubMedCentralCrossRefGoogle Scholar
  109. Salonen SM (1990) Method for manufacturing paper or cardboard and product containing cellulase. US Patent 4980023Google Scholar
  110. Sánchez MM, Pastor FIJ, Diaz P (2003) Exo-mode of action of cellobiohydrolase Cel48C from Paenibacillus sp. BP-23. Eur J Biochem 270:2913–2919PubMedCrossRefGoogle Scholar
  111. Scott BR, St-Pierre P, Lavigne J, et al (2010) Novel lignin-resistant cellulase enzymes. US Patent 20100221778Google Scholar
  112. Semichaevsky VD (1989) Cellulases of higher basidiomycetes. Mikol Filopatol 23:58–590Google Scholar
  113. Sharyo M, Sakaguchi H, Ohishi M et al (1978) Method of making sanitary paper from chemical pulp using a single component cellulase that does not contain cellulose-building domain. US Patent 6468391Google Scholar
  114. Sheehan J, Himmel M (1999) Enzymes, energy, and the environment: a strategic perspective on the U.S. department of energy’s research and development activities for bioethanol. Biotechnol Prog 15:817–827PubMedCrossRefGoogle Scholar
  115. Shen H, Gilkes NR, Kilburn DG et al (1995) Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. J Biochem 311:67–74CrossRefGoogle Scholar
  116. Shrivastava B, Thakur S, Khasa YP et al (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22(4):823–831PubMedCrossRefGoogle Scholar
  117. Singh A, Hayashi K (1995) Microbial cellulases, protein architecture molecular properties and biosynthesis. Adv Appl Microbiol 40:1–44PubMedCrossRefGoogle Scholar
  118. Singh A, Kumar PKR, Schugerl K (1991) Adsorption and reuse of cellulases during saccharification of cellulosic materials. J Biotechnol 18(3):205–212CrossRefGoogle Scholar
  119. Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I. K. International Publishing House, New Delhi, pp 345–358Google Scholar
  120. Sreenath HK, Shah AB, Yang VW et al (1996) Enzymatic polishing of jute/cotton blended fabrics. J Ferment Bioeng 81(1):18–20CrossRefGoogle Scholar
  121. Stork G, Puls J (1996) Changes in properties of different recycled pulps by endoglucanase treatments. In: Srebotnik E, Mesner K (eds) Proceedings of the international conference on biotechnology in the pulp and paper industry: recent advances in applied and fundamental research, vol 1. Facultas-Universitatsverlag, Vienna, pp 145–150Google Scholar
  122. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64(11):832–844Google Scholar
  123. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefGoogle Scholar
  124. Suominen P, Reinikainen T (1993) Foundation for biotechnical and industrial fermentation research. In: Proceedings of the 2nd symposium on Trichoderma Reesei cellulases and other hydrolases (TRICEL ’93), vol 8. Espoo, FinlandGoogle Scholar
  125. Taniguchi M, Suzuki H, Watanabe D et al (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643PubMedPubMedCentralCrossRefGoogle Scholar
  126. Teeri TT (1997) Crystalline cellulose degradation: new insights into the function of cellobiohydrolases. Trends Biotechnol 15:160–167CrossRefGoogle Scholar
  127. Tejada M, Gonzalez JL, García-Martínez AM et al (2008) Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresour Technol 99(11):4949–4957PubMedCrossRefGoogle Scholar
  128. Tiwari VN, Pathak AN, Lehri LK (1987) Effect of plant waste incorporation by different methods under uninoculated and inoculated conditions on wheat crops. Biol Wastes 21(4):267–273CrossRefGoogle Scholar
  129. Tounissen MJ, Dekont GVM, Op-den Camp HJM et al (1993) Production of cellulolytic and xylanolytic enzymes during growth of anaerobic fungi from ruminant and nonruminant herbivores on different substrates. Appl Biochem Biotechnol 39–40:177–189CrossRefGoogle Scholar
  130. Tu M, Chandra RP, Saddler JN (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23(2):398–406PubMedCrossRefGoogle Scholar
  131. Uhlig H (1998) Industrial enzymes and their applications. Wiley, New YorkGoogle Scholar
  132. UNEP (1999) International cleaner production information clearinghouse, CD version 1. United Nations Environment Programme, Division of Technology, Industry and Economics, Paris. Scholar
  133. Van Berkel R (2000) Cleaner production for process industries. Plenary lecture. Chemeca, PerthGoogle Scholar
  134. Vocadlo DJ, Davies GJ (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12:539–555PubMedCrossRefGoogle Scholar
  135. Wood TM, McCrae SI (1972) Purification and properties of Q component of Trichoderma koningii cellulose. J Biochem 128:1183–1192CrossRefGoogle Scholar
  136. Wood TM, McCrae SI (1986) The cellulase of Penicillium pinophilum. Synergism between enzyme components solubulising with reference to the involvement of two immunologically distinct cellobiohydrolases. J Biochem 234:93–99CrossRefGoogle Scholar
  137. Wood TM, McCrae SI, Bhat MK (1989) The mechanism of fungal cellulase action. Synergism between enzyme components of native cellulose. J Biochem 260:37–43CrossRefGoogle Scholar
  138. Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966PubMedCrossRefPubMedCentralGoogle Scholar
  139. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–95PubMedCrossRefPubMedCentralGoogle Scholar
  140. Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94(4):611–617PubMedCrossRefPubMedCentralGoogle Scholar
  141. Yanling H, Youfang D, Yanquan L (1991) Two cellulolytic Clostridium species. Clostridium cellulosi sp. nov. and clostridium cellulofermentans sp. Int J Syst Bacteriol 41:306–309CrossRefGoogle Scholar
  142. Yoon JJ, Cha CJ, Kim YS et al (2008) Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola. Biotechnol Lett 30:1373–1378PubMedCrossRefPubMedCentralGoogle Scholar
  143. Youn KS, Hong JH, Bae DH et al (2004) Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment. J Membr Sci 228(2):179–186CrossRefGoogle Scholar
  144. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34PubMedCrossRefPubMedCentralGoogle Scholar
  145. Zhang Y-HP (2008) Reviving the carbohydrate economy via multi-product biorefineries. J Ind Microbiol Biotechnol 35:367–375PubMedCrossRefGoogle Scholar
  146. Zhang Y-HP (2009) A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction? Energ Environ Sci 2:272–282CrossRefGoogle Scholar
  147. Zhang Y-HP, Lynd LR (2005) Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol 187:99–106PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zhang Y-HP, Himmel M, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481CrossRefGoogle Scholar
  149. Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134:2267–2272PubMedCrossRefGoogle Scholar
  150. Zosel T (1994) Pollution prevention in the chemical industry. In: Edgerly D (ed) Opportunities for innovation: pollution prevention. National Institute of Standards and Technology, Gaithersburg, pp 13–25Google Scholar
  151. Zverlov VV, Schantz N, Schwarz WH (2005) A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose. FEMS Microbiol Lett 249:353–358PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Soni Tiwari
    • 1
  • Tuhina Verma
    • 2
  1. 1.Department of Soil Sciences and Agricultural Chemistry Institute of Agricultural Sciences BHUVaranasiIndia
  2. 2.Department of Microbiology (Centre of Excellence)Dr. Ram Manohar Lohia Avadh UniversityFaizabadIndia

Personalised recommendations