Advertisement

An Insight into Fungal Cellulases and Their Industrial Applications

  • Kavitha Sampathkumar
  • Valarmathi Kumar
  • Selvaraju Sivamani
  • Nallusamy Sivakumar
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Cellulases are glycoside hydrolases that catalyze the hydrolysis of crystalline and amorphous cellulose to its oligomers and monomers. Cellulases from microbial sources have received a lot of attention because of their industrial applications, and these enzymes are mainly used in the energy sector. This review provides a summary of fungal cellulases, including the microorganisms used to produce cellulases, the efficient use of industrial residues as substrates for the production of cellulases, and their applications in various industrial sectors. Fungal cellulases can play a vital role in the biofuels sector when its potential is exploited.

Keywords

Cellulases Fungi Industrial applications Biofuels Solid state fermentation Cellulose 

References

  1. Adhyaru DN, Bhatt NS, Modi HA (2015) Optimization of upstream and downstream process parameters for cellulases-poor-thermo-solvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1. Bioresour Bioprocess 2(1):3CrossRefGoogle Scholar
  2. Adsul MG, Bastawde KB, Varma AJ, Gokhale DV (2007) Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulases production. Bioresour Technol 98(7):1467–1473PubMedCrossRefGoogle Scholar
  3. Adsul MG, Terwadkar AP, Varma AJ, Gokhale D (2009) Cellulases from Penicillium janthinellum mutants: solid-state production and their stability in ionic liquids. Bioresources 4(4):1670–1681Google Scholar
  4. Ahmed S, Bashir A, Saleem H, Saadia M, Jamil A (2009) Production and purification of cellulose-degrading enzymes from a filamentous fungus Trichoderma harzianum. Pak J Bot 41(3):1411–1419Google Scholar
  5. Amir IJAZ, Anwar Z, Zafar Y, Iqbal H, Aish M, Muhammad I, Sajid M (2011) Optimization of cellulases enzyme production from corn cobs using Alternaria alternata by solid state fermentation. J Cell Mol Biol 9(2):51–56Google Scholar
  6. Anand T, Bhaskaran R, Karthikeyan TG, Rajesh M, Senthilraja G (2008) Production of cell wall degrading enzymes and toxins by Colletotrichum capsici and Alternaria alternata causing fruit rot of chillies. J Plant Protect Res 48(4):437–451CrossRefGoogle Scholar
  7. Anish R, Rahman MS, Rao M (2007) Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol Bioeng 96(1):48–56PubMedCrossRefGoogle Scholar
  8. Anita S, Namita S, Bishnoi NR (2009) Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. Int J Env Sci Eng 1(1):23–26Google Scholar
  9. Baba Y, Shimonaka A, Koga J, Kubota H, Kono T (2005) Alternative splicing produces two endoglucanases with one or two carbohydrate-binding modules in Mucor circinelloides. J Bacteriol 187(9):3045–3051PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baba Y, Sumitani JI, Tani S, Kawaguchi T (2015) Characterization of Aspergillus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulases system. AMB Express 5(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baldrian P, Gabriel J (2003) Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol Lett 220(2):235–240PubMedCrossRefPubMedCentralGoogle Scholar
  12. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848CrossRefGoogle Scholar
  13. Belghith H, Chaabouni SE, Gargouri A (2001a) Stabilization of Penicillium occitanis cellulases by spray drying in presence of Maltodextrin. Enzym Microb Technol 28(2–3):253–258CrossRefGoogle Scholar
  14. Belghith H, Ellouz-Chaabouni S, Gargouri A (2001b) Biostoning of denims by Penicillium occitanis (Pol6) cellulases. J Biotechnol 89(2–3):257–262PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bhatti HN, Batool S, Afzal N (2013) Production and characterization of a novel (beta)-glucosidase from Fusarium solani. Int J Agric Biol 15(1):140–144Google Scholar
  16. Boer H, Teeri TT, Koivula A (2000) Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 69(5):486–494PubMedCrossRefPubMedCentralGoogle Scholar
  17. Boisset C, Pétrequin C, Chanzy H, Henrissat B, Schülein M (2001) Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnol Bioeng 72(3):339–345PubMedCrossRefPubMedCentralGoogle Scholar
  18. Camassola M, Dillon AJP (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugarcane bagasse and wheat bran in solid-state fermentation. J Appl Microbiol 103(6):2196–2204PubMedCrossRefPubMedCentralGoogle Scholar
  19. Camassola M, Dillon AJ (2009) Biological pretreatment of sugarcane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crop Prod 29(2–3):642–647CrossRefGoogle Scholar
  20. Camassola M, Dillon AJ (2010) Cellulases and xylanases production by Penicillium echinulatum grown on sugarcane bagasse in solid-state fermentation. Appl Biochem Biotechnol 162(7):1889–1900PubMedCrossRefPubMedCentralGoogle Scholar
  21. Camassola M, De Bittencourt LR, Shenem NT, Andreaus J, Dillon AJP (2004) Characterization of the cellulases complex of Penicillium echinulatum. Biocatal Biotransformation 22(5–6):391–396CrossRefGoogle Scholar
  22. Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71(5):2412–2417PubMedPubMedCentralCrossRefGoogle Scholar
  23. Coral G, Arikan B, Ünaldi MN, Güvenmez H (2002) Some properties of crude carboxymethyl cellulases of Aspergillus niger Z10 wild-type strain. Turk J Biol 26(4):209–213Google Scholar
  24. da Silva Delabona P, Farinas CS, da Silva MR, Azzoni SF, da Cruz Pradella JG (2012) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugarcane bagasse for on-site cellulases production. Bioresour Technol 107:517–521CrossRefGoogle Scholar
  25. de Castro AM, de Carvalho MLDA, Leite SGF, Pereira N (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37(2):151–158PubMedCrossRefPubMedCentralGoogle Scholar
  26. Davies GJ, Brzozowski AM, Dauter M, Varrot A, Schülein M (2000) Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 Å resolution. Biochem J 348(1):201–207PubMedPubMedCentralCrossRefGoogle Scholar
  27. Decker C, Visser J, Schreier P (2001) β-glucosidase multiplicity from Aspergillus tubingensis CBS 643.92: purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Appl Microbiol Biotechnol 55(2):157–163PubMedCrossRefPubMedCentralGoogle Scholar
  28. Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9(1):87–94CrossRefGoogle Scholar
  29. Desvaux M (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29(4):741–764PubMedCrossRefPubMedCentralGoogle Scholar
  30. Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulases production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102(10):6065–6072PubMedCrossRefGoogle Scholar
  31. Deswal D, Gupta R, Nandal P, Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269PubMedCrossRefGoogle Scholar
  32. Dillon AJP, Bettio M, Pozzan FG, Andrighetti T, Camassola M (2011) A new Penicillium echinulatum strain with faster cellulases secretion obtained using hydrogen peroxide mutagenesis and screening with 2-deoxyglucose. J Appl Microbiol 111(1):48–53PubMedCrossRefGoogle Scholar
  33. Dimarogona M, Topakas E, Olsson L, Christakopoulos P (2012) Lignin boosts the cellulases performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresour Technol 110:480–487PubMedCrossRefGoogle Scholar
  34. Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crop Prod 29(2–3):404–411CrossRefGoogle Scholar
  35. Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S (2008) Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 35(4):275–282PubMedCrossRefGoogle Scholar
  36. e Silva LAD, Lopes FC, Silveira ST, Brandelli A (2009) Production of cellulolytic enzymes by Aspergillus phoenicis in grape waste using response surface methodology. Appl Biochem Biotechnol 152(2):295–305CrossRefGoogle Scholar
  37. El-Katatny M, Gudelj M, Robra KH, Elnaghy M, Gübitz G (2001) Characterization of a chitinase and an endo-β-1, 3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol 56(1–2):137–143PubMedCrossRefGoogle Scholar
  38. Eshel D, Lichter A, Dinoor A, Prusky D (2002) Characterization of Alternaria alternata glucanase genes expressed during infection of resistant and susceptible persimmon fruits. Mol Plant Pathol 3(5):347–358PubMedCrossRefGoogle Scholar
  39. Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99(16):7623–7629PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gomathi D, Muthulakshmi C, Kumar DG, Ravikumar G, Kalaiselvi M, Uma C (2012) Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulases. Asian Pac J Trop Biomed 2(1):S67–S73CrossRefGoogle Scholar
  41. Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68(1):53–58PubMedPubMedCentralCrossRefGoogle Scholar
  42. Haakana H, Miettinen-Oinonen A, Joutsjoki V, Mäntylä A, Suominen P, Vehmaanperä J (2004) Cloning of cellulases genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzym Microb Technol 34(2):159–167CrossRefGoogle Scholar
  43. Herculano PN, Porto TS, Moreira KA, Pinto GA, Souza-Motta CM, Porto ALF (2011) Cellulases production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L.) under solid-state fermentation. Appl Biochem Biotechnol 165(3–4):1057–1067PubMedCrossRefGoogle Scholar
  44. Herculano PN, Porto TS, Maciel MH, Moreira KA, Souza-Motta CM, Porto AL (2012) Partitioning and purification of the cellulolytic complex produced by Aspergillus japonicus URM5620 using PEG–citrate in an aqueous two-phase system. Fluid Phase Equilib 335:8–13CrossRefGoogle Scholar
  45. Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for isobutanol production from cellulose. Appl Environ Microbiol 77:2727PubMedPubMedCentralCrossRefGoogle Scholar
  46. Highley TL, Wolter KE, Evans FJ (2007) Polysaccharide-degrading complex produced in wood and in liquid media by the brown-rot fungus Poria placenta. Wood Fiber Sci 13(4):265–274Google Scholar
  47. Hirvonen M, Papageorgiou AC (2003) Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: mechanistic implications based on the free and cellobiose-bound forms. J Mol Biol 329(3):403–410PubMedCrossRefGoogle Scholar
  48. Hu HL, Van den Brink J, Gruben BS, Wösten HAB, Gu JD, De Vries RP (2011) Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int Biodeter Biodegr 65(1):248–252CrossRefGoogle Scholar
  49. Hui L, Wan C, Hai-Tao D, Xue-Jiao C, Qi-Fa Z, Yu-Hua Z (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101(19):7556–7562CrossRefGoogle Scholar
  50. Immanuel G, Bhagavath CMA, Raj PI, Esakkiraj P, Palavesam A (2007) Production and partial purification of cellulases by Aspergillus niger and A. fumigatus fermented in coir waste and sawdust. Internet J Microbiol 3(1):1–20Google Scholar
  51. Jeya M, Zhang YW, Kim IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulases from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol 100(21):5155–5161PubMedCrossRefGoogle Scholar
  52. Jeya M, Moon HJ, Kim SH, Lee JK (2010b) Conversion of woody biomass into fermentable sugars by cellulases from Agaricus arvensis. Bioresour Technol 101(22):8742–8749PubMedCrossRefGoogle Scholar
  53. Jørgensen H, Olsson L (2006) Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enzym Microb Technol 38(3–4):381–390CrossRefGoogle Scholar
  54. Jørgensen H, Eriksson T, Börjesson J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzym Microb Technol 32(7):851–861CrossRefGoogle Scholar
  55. Jung DU, Yoo HY, Kim SB, Lee JH, Park C, Kim SW (2015) Optimization of medium composition for enhanced cellulases production by mutant Penicillium brasilianum KUEB15 using statistical method. J Ind Eng Chem 25:145–150CrossRefGoogle Scholar
  56. Kajisa T, Yoshida M, Igarashi K, Katayama A, Nishino T, Samejima M (2004) Characterization and molecular cloning of cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana. J Biosci Bioeng 98(1):57–63PubMedCrossRefGoogle Scholar
  57. Kajisa T, Igarashi K, Samejima M (2009) The genes encoding glycoside hydrolase family 6 and 7 cellulases from the brown-rot fungus Coniophora puteana. J Wood Sci 55(5):376CrossRefGoogle Scholar
  58. Kalogeris E, Christakopoulos P, Katapodis P, Alexiou A, Vlachou S, Kekos D, Macris BJ (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38(7):1099–1104CrossRefGoogle Scholar
  59. Karimi K, Emtiazi G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzym Microb Technol 40(1):138–144CrossRefGoogle Scholar
  60. Kaur G, Satyanarayana T (2004) Production of extracellular pectinolytic, cellulolytic and xylanoytic enzymes by thermophilic mould Sporotrichum thermophile Apinis in solid state fermentation. Indian J Biotechnol 3(4):552–557Google Scholar
  61. Kluczek-Turpeinen B, Maijala P, Tuomela M, Hofrichter M, Hatakka A (2005) Endoglucanase activity of compost-dwelling fungus Paecilomyces inflatus is stimulated by humic acids and other low molecular mass aromatics. World J Microbiol Biotechnol 21(8–9):1603CrossRefGoogle Scholar
  62. Koseki T, Mese Y, Fushinobu S, Masaki K, Fujii T, Ito K et al (2008) Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl Microbiol Biotechnol 77(6):1279PubMedCrossRefGoogle Scholar
  63. Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H et al (2008) Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622–627PubMedCrossRefGoogle Scholar
  64. Kovács K, Megyeri L, Szakacs G, Kubicek CP, Galbe M, Zacchi G (2008) Trichoderma atroviride mutants with enhanced production of cellulases and β-glucosidase on pretreated willow. Enzym Microb Technol 43(1):48–55CrossRefGoogle Scholar
  65. Kovacs K, Macrelli S, Szakacs G, Zacchi G (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2(1):14PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kovács K, Szakacs G, Zacchi G (2009) Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresour Technol 100(3):1350–1357PubMedCrossRefGoogle Scholar
  67. Krishna SH, Rao KS, Babu JS, Reddy DS (2000) Studies on the production and application of cellulases from Trichoderma reesei QM-9414. Bioprocess Eng 22(5):467–470CrossRefGoogle Scholar
  68. Krogh KB, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J, Olsson L (2010) Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl Microbiol Biotechnol 86(1):143–154PubMedCrossRefGoogle Scholar
  69. Lee SM, Koo YM (2001) Pilot-scale production of cellulases using Trichoderma reesei Rut C-30 fed-batch mode. J Microbiol Biotechnol 11(2):229–233Google Scholar
  70. Leghlimi H, Meraihi Z, Boukhalfa-Lezzar H, Copinet E, Duchiron F (2013) Production and characterization of cellulolytic activities produced by Trichoderma longibrachiatum (GHL). Afr J Biotechnol 12(5):465–475Google Scholar
  71. Li DC, Lu M, Li YL, Lu J (2003) Purification and characterization of an endocellulases from the thermophilic fungus Chaetomium thermophilum CT2. Enzym Microb Technol 33(7):932–937CrossRefGoogle Scholar
  72. Lockington RA, Rodbourn L, Barnett S, Carter CJ, Kelly JM (2002) Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genet Biol 37(2):190–196PubMedCrossRefGoogle Scholar
  73. Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Santa Anna LMM, De Castro AM et al (2011) Enzymatic hydrolysis of pretreated sugarcane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 46(5):1196–1201CrossRefGoogle Scholar
  74. Mariyam I (2011) Multistep mutagenesis for the over-expression of cellulases in Humicola insolens. Pak J Bot 43(1):669–677Google Scholar
  75. Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(6):695PubMedCrossRefGoogle Scholar
  76. Martins LF, Kolling D, Camassola M, Dillon AJP, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99(5):1417–1424PubMedCrossRefPubMedCentralGoogle Scholar
  77. Miettinen-Oinonen A, Londesborough J, Joutsjoki V, Lantto R, Vehmaanperä J, Biotec PL (2004) Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzym Microb Technol 34(3–4):332–341CrossRefGoogle Scholar
  78. Milala MA, Shehu BB, Zanna H, Omosioda VO (2009) Degradation of agro-waste by cellulases from Aspergillus candidus. Asian J Biotechnol 1(2):51–56CrossRefGoogle Scholar
  79. Mølhøj M, Ulvskov P, Dal Degan F (2001) Characterization of a functional soluble form of a Brassica napus membrane-anchored endo-1, 4-β-glucanase heterologously expressed in Pichia pastoris. Plant Physiol 127(2):674–684PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mrudula S, Murugammal R (2011) Production of cellulases by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42(3):1119–1127PubMedPubMedCentralCrossRefGoogle Scholar
  81. Murashima K, Nishimura T, Nakamura Y, Koga J, Moriya T, Sumida N et al (2002) Purification and characterization of new endo-1, 4-β-D-glucanases from Rhizopus oryzae. Enzym Microb Technol 30(3):319–326CrossRefGoogle Scholar
  82. Narra M, Dixit G, Divecha J, Madamwar D, Shah AR (2012) Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresour Technol 121:355–361PubMedCrossRefGoogle Scholar
  83. Nascimento CV, Souza FHM, Masui DC, Leone FA, Peralta RM, Jorge JA, Furriel RPM (2010) Purification and biochemical properties of a glucose-stimulated β-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. J Microbiol 48(1):53–62PubMedCrossRefGoogle Scholar
  84. Ng IS, Li CW, Chan SP, Chir JL, Chen PT, Tong CG et al (2010) High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresour Technol 101(4):1310–1317PubMedCrossRefGoogle Scholar
  85. Niemenmaa O, Uusi-Rauva A, Hatakka A (2008) Demethoxylation of [O 14 CH 3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation 19(4):555PubMedCrossRefGoogle Scholar
  86. Niranjane AP, Madhou P, Stevenson TW (2007) The effect of carbohydrate carbon sources on the production of cellulases by Phlebia gigantea. Enzym Microb Technol 40(6):1464–1468CrossRefGoogle Scholar
  87. Obodai M, Cleland-Okine J, Vowotor KA (2003) Comparative study on the growth and yield of Pleurotus ostreatus mushroom on different lignocellulosic by-products. J Ind Microbiol Biotechnol 30(3):146–149PubMedCrossRefPubMedCentralGoogle Scholar
  88. Obruca S, Marova I, Matouskova P, Haronikova A, Lichnova A (2012) Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiol 57(3):221–227CrossRefGoogle Scholar
  89. Ojumu TV, Solomon BO, Betiku E, Layokun SK, Amigun B (2003) Cellulases production by Aspergillus flavus Linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. Afr J Biotechnol 2(6):150–152CrossRefGoogle Scholar
  90. Omojasola PF, Jilani OP (2008) Cellulases production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisiae cultured on waste materials from orange. Pak J Biol Sci 11(20):2382–2388PubMedCrossRefPubMedCentralGoogle Scholar
  91. Panagiotou G, Kekos D, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crop Prod 18(1):37–45CrossRefGoogle Scholar
  92. Panagiotou G, Christakopoulos P, Olsson L (2005) Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3—growth characteristics and metabolite profiling. Enzym Microb Technol 36(5–6):693–699CrossRefGoogle Scholar
  93. Panagiotou G, Granouillet P, Olsson L (2006) Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation. Appl Microbiol Biotechnol 72(6):1117–1124PubMedCrossRefPubMedCentralGoogle Scholar
  94. Park EY, Anh PN, Okuda N (2004) Bioconversion of waste office paper to L (+)-lactic acid by the filamentous fungus Rhizopus oryzae. Bioresour Technol 93(1):77–83PubMedCrossRefPubMedCentralGoogle Scholar
  95. Parkkinen T, Koivula A, Vehmaanperä J, Rouvinen J (2008) Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci 17(8):1383–1394PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pessani NK, Atiyeh HK, Wilkins MR, Bellmer DD, Banat IM (2011) Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol 102(22):10618–10624PubMedCrossRefPubMedCentralGoogle Scholar
  97. Phillips CM, Beeson WT IV, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6(12):1399–1406PubMedCrossRefPubMedCentralGoogle Scholar
  98. Qin Y, He H, Li N, Ling M, Liang Z (2010) Isolation and characterization of a thermostable cellulases-producing Fusarium chlamydosporum. World J Microbiol Biotechnol 26(11):1991–1997CrossRefGoogle Scholar
  99. Ramanathan G, Banupriya S, Abirami D (2010) Production and optimization of cellulases from Fusarium oxysporum by submerged fermentation. J Sci Ind Res 69(6):454–459Google Scholar
  100. Reddy GV, Babu PR, Komaraiah P, Roy KRRM, Kothari IL (2003) Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38(10):1457–1462CrossRefGoogle Scholar
  101. Rocky-Salimi K, Hamidi-Esfahani Z (2010) Evaluation of the effect of particle size, aeration rate and harvest time on the production of cellulases by Trichoderma reesei QM9414 using response surface methodology. Food Bioprod Process 88(1):61–66CrossRefGoogle Scholar
  102. Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39(12):1871–1876CrossRefGoogle Scholar
  103. Schmidt H, Taniwaki MH, Vogel RF, Niessen L (2004) Utilization of AFLP markers for PCR-based identification of Aspergillus carbonarius and indication of its presence in green coffee samples. J Appl Microbiol 97(5):899–909PubMedCrossRefPubMedCentralGoogle Scholar
  104. Sehnem NT, de Bittencourt LR, Camassola M, Dillon AJ (2006) Cellulases production by Penicillium echinulatum on lactose. Appl Microbiol Biotechnol 72(1):163–167PubMedCrossRefGoogle Scholar
  105. Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99(14):6556–6564PubMedCrossRefGoogle Scholar
  106. Shimokawa T, Shibuya H, Nojiri M, Yoshida S, Ishihara M (2008) Purification, molecular cloning, and enzymatic properties of a family 12 endoglucanase (EG-II) from Fomitopsis palustris: role of EG-II in larch holocellulose hydrolysis. Appl Environ Microbiol 74(18):5857–5861PubMedPubMedCentralCrossRefGoogle Scholar
  107. Singh A, Singh N, Bishnoi NR (2009a) Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. Int J Environ Sci Eng 1:1Google Scholar
  108. Singh R, Kumar R, Bishnoi K, Bishnoi NR (2009b) Optimization of synergistic parameters for thermostable cellulases activity of Aspergillus heteromorphus using response surface methodology. Biochem Eng J 48(1):28–35CrossRefGoogle Scholar
  109. Singhania RR, Sukumaran RK, Pillai A, Prema P, Szakacs G, Pandey A (2006) Solid-state fermentation of lignocellulosic substrates for cellulases production by Trichoderma reesei NRRL 11460. Indian J Biotechnol 5(3):332–336Google Scholar
  110. Singhania RR, Saini JK, Saini R, Adsul M, Mathur A, Gupta R, Tuli DK (2014) Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases. Bioresour Technol 169:490–495PubMedCrossRefGoogle Scholar
  111. Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2009) Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 44(5):540–545CrossRefGoogle Scholar
  112. Szijártó N, Siika-aho M, Tenkanen M, Alapuranen M, Vehmaanperä J, Réczey K, Viikari L (2008) Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol 136(3–4):140–147PubMedCrossRefGoogle Scholar
  113. Takashima S, Ohno M, Hidaka M, Nakamura A, Masaki H, Uozumi T (2007) Correlation between cellulose binding and activity of cellulose-binding domain mutants of Humicola grisea cellobiohydrolase 1. FEBS Lett 581(30):5891–5896PubMedCrossRefGoogle Scholar
  114. Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643PubMedCrossRefPubMedCentralGoogle Scholar
  115. Tao YM, Zhu XZ, Huang JZ, Ma SJ, Wu XB, Long MN, Chen QX (2010) Purification and properties of endoglucanase from a sugarcane bagasse hydrolyzing strain, Aspergillus glaucus XC9. J Agric Food Chem 58(10):6126–6130PubMedCrossRefPubMedCentralGoogle Scholar
  116. Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JH, Glass NL (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Nat Acad Sci 106:22157–22162PubMedCrossRefPubMedCentralGoogle Scholar
  117. Tomás-Pejó E, García-Aparicio M, Negro MJ, Oliva JM, Ballesteros M (2009) Effect of different cellulases dosages on cell viability and ethanol production by Kluyveromyces marxianus in SSF processes. Bioresour Technol 100(2):890–895PubMedCrossRefPubMedCentralGoogle Scholar
  118. Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulases from Trichoderma reesei. Green Chem 5(4):443–447CrossRefGoogle Scholar
  119. Valášková V, Baldrian P (2006) Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Res Microbiol 157(2):119–124PubMedCrossRefPubMedCentralGoogle Scholar
  120. Van Wyk JPH, Mohulatsi M (2003) Biodegradation of wastepaper by cellulases from Trichoderma viride. Bioresour Technol 86(1):21–23PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kavitha Sampathkumar
    • 1
  • Valarmathi Kumar
    • 1
  • Selvaraju Sivamani
    • 2
  • Nallusamy Sivakumar
    • 3
  1. 1.Department of Biotechnology, Kumaraguru College of TechnologyCoimbatoreIndia
  2. 2.Chemical Engineering Section, Engineering Department, Salalah College of TechnologySalalahOman
  3. 3.Department of Biology, College of Science, Sultan Qaboos UniversityMuscatOman

Personalised recommendations