Current Advancements in Recombinant Technology for Industrial Production of Cellulases: Part-II

  • Gurudatta Singh
  • Amit Kumar Patel
  • Akanksha Gupta
  • Deepak Gupta
  • Virendra Kumar Mishra
Part of the Fungal Biology book series (FUNGBIO)


Cellulase is the largest group of industrial enzyme used worldwide for the degradation of cellulose. Since many industries use this enzyme for the production of good quality of products, hence the demand for cellulase is increasing day by day. Cellulases are preferred for different purposes by industries which include paper recycling, cotton, textile, juice extraction, food, etc. Cellulases have some major enzymatic group components such as endoglucanases, exoglucanase and β-glycosidase. Different technologies are used for the production of cellulases, i.e. shake-flask experiments to fermentations, construction of improved cellulases, batch cellulase production and fed-batch cellulase production. Each method has its own limitations; considering these limitations, recombinant technology may play a valuable function in increasing the cellulase production. In present scenario, different industries are using the recombinant technology for the enhancement of cellulase production. The recombinant technology can help to produce cellulase more effectively than the other technologies which convert cellulosic biomass to glucose and other products. In nature, microorganism has the potential to produce cellulases, which enable the function of hydrolysing cellulose. However, recent reports claim that the plants, several molluscs such as snails, a periwinkle, Nudibranchia and a few bivalves also have the ability to yield cellulases. In this chapter, we have concluded how recombinant technology can help to manage the crisis of cellulases for various objectives and also improving the availability of biofuel.


Cellulase Recombinant technology Biofuel Fermentation Endoglucanases Exoglucanase Microorganisms 


  1. Alriksson B, Rose SH, van Zyl WH, Sjöde A, Nilvebrant NO, Jönsson LJ (2009) Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Appl Environ Microbiol 75(8):2366–2374PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ariffin H, Hassan MA, Shah UK, Abdullah N, Ghazali FM, Shirai Y (2008) Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J Biosci Bioeng 106(3):231–236PubMedCrossRefGoogle Scholar
  3. Balasubramanian N, Simões N (2014) Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. Int J Biol Macromol 67:132–139PubMedCrossRefGoogle Scholar
  4. Bansal N, Tewari R, Soni R, Soni SK (2012) Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag 32(7):1341–1346PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18(3):237–245CrossRefGoogle Scholar
  6. Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017) Microbial cellulases diversity & biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol 15 (1):197–210Google Scholar
  7. Béra-Maillet C, Mosoni P, Kwasiborski A, Suau F, Ribot Y, Forano E (2009) Development of a RT-qPCR method for the quantification of Fibrobacter succinogenes S85 glycoside hydrolase transcripts in the rumen content of gnotobiotic and conventional sheep. J Microbiol Methods 77(1):8–16PubMedCrossRefGoogle Scholar
  8. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bhatti HN, Batool S, Afzal N (2013) Production and characterization of a novel (beta)-glucosidase from Fusarium solani. Int J Agric Biol 15(1):140–144Google Scholar
  10. Bower BS, Larenas EA, Mitchinson C, inventors; Danisco US Inc, assignee (2012) Exo-endo cellulase fusion protein. United States patent US 8,097–445Google Scholar
  11. Brunecky R, Selig MJ, Vinzant TB, Himmel ME, Lee D, Blaylock MJ, Decker SR (2011) In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnol Biofuels 4(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  12. Carere C, Sparling R, Cicek N, Levin D (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9(7):1342–1360PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chinn MS, Nokes SE, Strobel HJ (2008) Influence of moisture content and cultivation duration on Clostridium thermocellum 27405 end-product formation in solid substrate cultivation on Avicel. Bioresour Technol 99(7):2664–2671PubMedCrossRefGoogle Scholar
  14. Chou HL, Dai Z, Hsieh CW, Ku MS (2011) High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. Biotechnol Biofuels 4(1):58PubMedPubMedCentralCrossRefGoogle Scholar
  15. Comlekcioglu U, Ozkose E, Tutus A, Akyol I, Ekinci MS (2010) Cloning and characterization of cellulase and xylanase coding genes from anaerobic fungus Neocallimastix sp. GMLF1. Int J Agric Biol 12(5):691–696Google Scholar
  16. Dalby PA (2007) Engineering enzymes for biocatalysis. Recent Pat Biotechnol 1(1):1–9PubMedCrossRefGoogle Scholar
  17. Desvaux M, Guedon E, Petitdemange H (2000) Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl Environ Microbiol 66(6):2461–2470PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dharmagadda VS, Nokes SE, Strobel HJ, Flythe MD (2010) Investigation of the metabolic inhibition observed in solid-substrate cultivation of Clostridium thermocellum on cellulose. Bioresour Technol 101(15):6039–6044PubMedCrossRefGoogle Scholar
  19. Dong J, Hong Y, Shao Z, Liu Z (2010) Molecular cloning, purification, and characterization of a novel, acidic, pH-stable endoglucanase from Martelella mediterranea. J Microbiol 48(3):393–398PubMedCrossRefGoogle Scholar
  20. Duan CJ, Feng JX (2010) Mining metagenomes for novel cellulase genes. Biotechnol Lett 32(12):1765–1775PubMedCrossRefGoogle Scholar
  21. Ekperigin MM (2007) Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr J Biotechnol 6(1):28–33Google Scholar
  22. El-Gogary S, Leite A, Crivellaro O, Eveleigh DE, El-Dorry H (1989) Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. Proc Natl Acad Sci 86(16):6138–6141PubMedCrossRefGoogle Scholar
  23. Esterbauer H, Steiner W, Labudova I, Hermann A, Hayn M (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 36(1):51–65CrossRefGoogle Scholar
  24. Fischer R, Ostafe R, Twyman RM (2013) Cellulases from insects. In: Yellow biotechnology II. Springer, Berlin, Heidelberg, pp 51–64CrossRefGoogle Scholar
  25. Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U (2013) Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 31(10):581–593PubMedCrossRefGoogle Scholar
  26. Ghoshal G, Banerjee UC, Shivhare US (2013) Optimization of cellulase (EC 3.2. 1: 4) production using Penicillium citrinum MTCC 9620 in solid state fermentation. Br Biotechnol J 3(4):509–523CrossRefGoogle Scholar
  27. Gupta M, Sharma M, Singh S, Gupta P, Bajaj BK (2015) Enhanced production of cellulase from Bacillus licheniformis K-3 with potential for saccharification of rice straw. Energ Technol 3(3):216–224CrossRefGoogle Scholar
  28. Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29(9):419–425PubMedCrossRefGoogle Scholar
  29. Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73(6):1331–1339PubMedCrossRefGoogle Scholar
  30. Hood EE, Devaiah SP, Fake G, Egelkrout E, Teoh K, Requesens DV, Hayden C, Hood KR, Pappu KM, Carroll J, Howard JA (2012) Manipulating corn germplasm to increase recombinant protein accumulation. Plant Biotechnol J 10(1):20–30PubMedCrossRefGoogle Scholar
  31. Jeon E, Hyeon JE, Suh DJ, Suh YW, Kim SW, Song KH, Han SO (2009) Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes. Mol Cells 28(4):369PubMedCrossRefGoogle Scholar
  32. Jung S, Lee DS, Kim YO, Joshi CP, Bae HJ (2013) Improved recombinant cellulase expression in chloroplast of tobacco through promoter engineering and 5′ amplification promoting sequence. Plant Mol Biol 83(4–5):317–328PubMedCrossRefGoogle Scholar
  33. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203CrossRefGoogle Scholar
  34. Knappert D, Grethlein H, Converse A (1980) Partial acid hydrolysis of cellulosic materials as a pretreatment for enzymatic hydrolysis. Biotechnol Bioeng 22(7):1449–1463CrossRefGoogle Scholar
  35. Knowles J, Lehtovaara P, Teeri T, Penttilä M, Salovuori I, Andre L (1987) The application of recombinant-DNA technology to cellulases and lignocellulosic wastes. Philos Trans R Soc 321(1561):449–454CrossRefGoogle Scholar
  36. Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M (2008) Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622–627CrossRefGoogle Scholar
  37. Krishna C (1999) Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol 69(3):231–239CrossRefGoogle Scholar
  38. Kubicek CP, Messner R, Gruber F, Mach RL, Kubicek-Pranz EM (1993) The Trichoderma cellulase regulatory puzzle: from the interior life of a secretory fungus. Enzym Microb Technol 15(2):90–99CrossRefGoogle Scholar
  39. Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletschke BI, Singh A, Karp M (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sust Energ Rev 55:249–272CrossRefGoogle Scholar
  40. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res 1–10CrossRefGoogle Scholar
  41. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7(1):135PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lamed RA, Setter E, Kenig RI, Bayer EA (1983) The cellulosomes—a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioenergy Symp 13:163–181Google Scholar
  43. Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40(2):195–201PubMedCrossRefGoogle Scholar
  44. Li YL, Li H, Li AN, Li DC (2009) Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris. J Appl Microbiol 106(6):1867–1875PubMedCrossRefGoogle Scholar
  45. Liang Y, Feng Z, Yesuf J, Blackburn JW (2010) Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp. 527. Appl Biochem Biotechnol 160(6):1841–1852PubMedPubMedCentralCrossRefGoogle Scholar
  46. Liu D, Zhang R, Yang X, Zhang Z, Song S, Miao Y, Shen Q (2012) Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microb Cell Factories 11(1):25CrossRefGoogle Scholar
  47. Lo YC, Saratale GD, Chen WM, Bai MD, Chang JS (2009) Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzym Microb Technol 44(6–7):417–425CrossRefGoogle Scholar
  48. Lo YC, Lu WC, Chen CY, Chen WM, Chang JS (2010) Characterization and high-level production of xylanase from an indigenous cellulolytic bacterium Acinetobacter junii F6-02 from southern Taiwan soil. Biochem Eng J 53(1):77–84CrossRefGoogle Scholar
  49. Lü R, Zhao A, Li J, Liu C, Wang C, Wang X, Wang X, Pei R, Lu C, Yu M (2015) Screening, cloning and expression analysis of a cellulase derived from the causative agent of hypertrophy sorosis scleroteniosis, Ciboria shiraiana. Gene 565(2):221–227PubMedCrossRefGoogle Scholar
  50. Maeda RN, Barcelos CA, Santa Anna LM, Pereira N Jr (2013) Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. J Biotechnol 163(1):38–44PubMedCrossRefGoogle Scholar
  51. Mazzoli R, Lamberti C, Pessione E (2012) Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 30(2):111–119PubMedCrossRefGoogle Scholar
  52. Miettinen-Oinonen A, Paloheimo M, Lantto R, Suominen P (2005) Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. J Biotechnol 116(3):305–317PubMedCrossRefGoogle Scholar
  53. Murray P, Aro N, Collins C, Grassick A, Penttilä M, Saloheimo M, Tuohy M (2004) Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr Purif 38(2):248–257PubMedCrossRefGoogle Scholar
  54. Nurul K, Kikuchi T (2011) Analysis of expressed sequence tags from the wood-decaying fungus Fomitopsis palustris and identification of potential genes involved in the decay process. J Microbiol Biotechnol 21(4):347–358Google Scholar
  55. Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K (2000) Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem 64(2):254–260PubMedCrossRefGoogle Scholar
  56. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158(1):58–68PubMedCrossRefGoogle Scholar
  57. Phitsuwan P, Laohakunjit N, Kerdchoechuen O, Kyu KL, Ratanakhanokchai K (2013) Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol 58(2):163–176CrossRefGoogle Scholar
  58. Ponpium P, Ratanakhanokchai K, Kyu KL (2000) Isolation and properties of a cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. Enzym Microb Technol 26(5–6):459–465CrossRefGoogle Scholar
  59. Rajoka MI, Malik KA (1997) Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresour Technol 59(1):21–27CrossRefGoogle Scholar
  60. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806PubMedCrossRefGoogle Scholar
  61. Reinhold-Hurek B, Hurek T, Claeyssens M, Van Montagu M (1993) Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol 175(21):7056–7065PubMedPubMedCentralCrossRefGoogle Scholar
  62. Rosenberg SL (1978) Lignin biodegradation and the production of ethyl alcohol from cellulose. Lignin biodegradation: microbiology, chemistry and potential applications. US Forest Products Laboratory, Madison, WI, May 9–11, 2013Google Scholar
  63. Ryu DD, Mandels M (1980) Cellulases: biosynthesis and applications. Enzym Microb Technol 2(2):91–102CrossRefGoogle Scholar
  64. Salem KS, Rashid TU, Islam MM, Khan MN, Sharmeen S, Rahman MM, Haque P (2016) Recent updates on immobilization of microbial cellulase. In New and future developments in microbial biotechnology and bioengineering, pp 107–139. ElsevierGoogle Scholar
  65. San Ryu J, Shary S, Houtman CJ, Panisko EA, Korripally P, John FJ, Crooks C, Siika-aho M, Magnuson JK, Hammel KE (2011) Proteomic and functional analysis of the cellulase system expressed by Postia placenta during brown rot of solid wood. Appl Environ Microbiol AEM-05496:7933–7941Google Scholar
  66. Saranraj P, Stella D, Reetha D (2012) Microbial cellulases and its applications. Int J Biochem Biotech Sci 1:1–2Google Scholar
  67. Schell DJ, Hinman ND, Wyman CE, Werdene PJ (1990) Whole broth cellulase production for use in simultaneous saccharification and fermentation. Appl Biochem Biotechnol 24(1):287CrossRefGoogle Scholar
  68. Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42 β-galactosidase from a psychrophilic Antarctic Planococcus isolate. Appl Environ Microbiol 66(6):2438–2444PubMedPubMedCentralCrossRefGoogle Scholar
  69. Shiang M, Linden JC, Mohagneghi A, Rivard CJ, Grohmann K, Himmel ME (1990) Cellulase production by Acidothermus cellulolyticus. Appl Biochem Biotechnol 1:223–235CrossRefGoogle Scholar
  70. Shiang M, Linden JC, Mohagheghi A, Grohmann K, Himmel ME (1991) Regulation of cellulase synthesis in Acidothermus cellulolyticus. Biotechnol Prog 7(4):315–322CrossRefGoogle Scholar
  71. Shu-bin L, Ren-Chao Z, Xia L, Chu-yi C, Ai-lin Y (2012) Solid-state fermentation with okara for production of cellobiase-rich cellulases preparation by a selected Bacillus subtilis Pa5. Afr J Biotechnol 11(11):2720–2730Google Scholar
  72. Singhania RR, Sukumaran RK, Pandey A (2007) Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl Biochem Biotechnol 142(1):60–70PubMedCrossRefGoogle Scholar
  73. Singhania RR, Adsul M, Pandey A, Patel AK (2017) Cellulases. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 73–101CrossRefGoogle Scholar
  74. Solingen P, Meijer D, Kleij WA, Barnett C, Bolle R, Power SD, Jones BE (2001) Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5(5):333–341PubMedCrossRefGoogle Scholar
  75. Sudto A, Punyathiti Y, Pongsilp N (2008) The use of agricultural wasted as substrates for cell growth and carboxymethyl cellulase (CMCase) production by Bacillus subtilis, Escherichia coli and Rhizobium sp. Curr Appl Sci Technol 8(2):84–92Google Scholar
  76. Szakmary K, Wotawa A, Kubicek CP (1991) Origin of oxidized cellulose degradation products and mechanism of their promotion of cellobiohydrolases I biosynthesis in Trichoderma reesei. Microbiology 137(12):2873–2878Google Scholar
  77. Tambor JH, Ren H, Ushinsky S, Zheng Y, Riemens A, St-Francois C, Tsang A, Powlowski J, Storms R (2012) Recombinant expression, activity screening and functional characterization identifies three novel endo-1, 4-β-glucanases that efficiently hydrolyse cellulosic substrates. Appl Microbiol Biotechnol 93(1):203–214PubMedCrossRefGoogle Scholar
  78. Tang B, Pan H, Zhang Q, Ding L (2009) Cloning and expression of cellulase gene EG1 from Rhizopus stolonifer var. reflexus TP-02 in Escherichia coli. Bioresour Technol 100(23):6129–6132PubMedCrossRefGoogle Scholar
  79. Tangnu SK, Blanch HW, Wilke CR (1981) Enhanced production of cellulase, hemicellulose, and β-glucosidase by Trichoderma reesei (Rut C-30). Biotechnol Bioeng 23(8):1837–1849CrossRefGoogle Scholar
  80. Thomas L, Joseph A, Gottumukkala LD (2014) Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement. Bioresour Technol 158:343–350PubMedCrossRefGoogle Scholar
  81. Thongekkaew J, Ikeda H, Masaki K, Iefuji H (2008) An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Expr Purif 60(2):140–146PubMedCrossRefGoogle Scholar
  82. Tsai SL, Oh J, Singh S, Chen R, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75(19):6087–6093PubMedPubMedCentralCrossRefGoogle Scholar
  83. Wang H, Bao K, inventors; Danisco US Inc, assignee (2009) Neutral cellulase catalytic core and method of producing same. United States patent application US 11/784-926Google Scholar
  84. Wang Z, Bay H, Chew K, Geng A (2014) High-loading oil palm empty fruit bunch saccharification using cellulases from Trichoderma koningii MF6. Process Biochem 49(4):673–680CrossRefGoogle Scholar
  85. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632PubMedCrossRefGoogle Scholar
  86. Watson TG, Nelligan I, Lessing L (1984) Cellulase production by Trichoderma reesei (RUT-C30) in fed-batch culture. Biotechnol Lett 6(10):667–672CrossRefGoogle Scholar
  87. Wei H, Xu Q, Taylor LE II, Baker JO, Tucker MP, Ding SY (2009) Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol 20(3):330–338PubMedCrossRefGoogle Scholar
  88. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299PubMedCrossRefGoogle Scholar
  89. Wulff NA, Carrer H, Pascholati SF (2006) Expression and purification of cellulase Xf818 from Xylella fastidiosa in Escherichia coli. Curr Microbiol 53(3):198–203PubMedCrossRefGoogle Scholar
  90. Xiros C, Katapodis P, Christakopoulos P (2011) Factors affecting cellulose and hemicellulose hydrolysis of alkali treated brewers spent grain by Fusarium oxysporum enzyme extract. Bioresour Technol 102(2):1688–1696PubMedCrossRefGoogle Scholar
  91. Yang D, Weng H, Wang M, Xu W, Li Y, Yang H (2010) Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I 15. Mol Biol Rep 37(4):1923–1929PubMedCrossRefGoogle Scholar
  92. Zhang J, Zhong Y, Zhao X, Wang T (2010) Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Bioresour Technol 101(24):9815–9818PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gurudatta Singh
    • 1
  • Amit Kumar Patel
    • 1
  • Akanksha Gupta
    • 1
  • Deepak Gupta
    • 1
  • Virendra Kumar Mishra
    • 1
  1. 1.Institute of Environment and Sustainable Development Banaras Hindu UniversityVaranasiIndia

Personalised recommendations