Advertisement

A Power Network Illegal Access Monitoring Method Based on Random Forests

  • Wenzhe ZhangEmail author
  • Wenwei Tao
  • Song Liu
  • Yang Su
  • Zhaohui Hu
  • Chao Hu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 905)

Abstract

With the development of network technology, people have begun to pay more and more attention to the impact of illegal access on the power network, and have tried to take measures to monitor whether the power network is illegally accessed. People try to use machine learning to monitor the power network. Because of the high classification accuracy and high efficiency of the random forest algorithm, we proposed a random forest-based power network monitoring algorithm. Comparison experiments with other algorithms have proved that our algorithm is more superior both in terms of time consumption and accuracy.

Kerwords

Network illegal access Power network monitoring Random forests 

Notes

Acknowledgement

This work is supported by Science and Technology Project of China Southern Power Grid Co., Ltd. “Research and Demonstration of Key Technologies of Network Security Situational Awareness in Power Monitoring System” (No. ZDKJXM20170002).

References

  1. 1.
    Stephen, N., Novak, J.: Network Intrusion Detection, An Analyst’s Handbook, pp. 207–219. Peoples Posts & Telecommunications Publishing House, Beijing (2000)Google Scholar
  2. 2.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  3. 3.
    Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: IEEE 11th International Conference on Computer Vision (2007)Google Scholar
  4. 4.
    Genuer, R., Poggi, J.M., Tuleau-Malot, C.: Variable selection using random forests. Pattern Recognit. Lett. 31(14), 2225–2236 (2010)CrossRefGoogle Scholar
  5. 5.
    Fanelli, G., Dantone, M., Gall, J., Fossati, A., Gool, L.V.: Random forests for real time 3D face analysis. Int. J. Comput. Vis. 101(3), 437–458 (2013)CrossRefGoogle Scholar
  6. 6.
    Jones, Z., Linder, F.: Exploratory data analysis using random forests. J. Open Source Softw. 1(6) (2016)Google Scholar
  7. 7.
    Nowak, J., Korytkowski, M., Nowicki, R., Scherer, R., Siwocha, A.: Random forests for profiling computer network users. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10842, pp. 734–739. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91262-2_64CrossRefGoogle Scholar
  8. 8.
    Lee, S., Moon, N.: Location recognition system using random forest. J. Ambient. Intell. Hum. Comput. 11, 1–6 (2018)Google Scholar
  9. 9.
    Sehapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)Google Scholar
  10. 10.
    Breiman, L.: Bagging predicators. Mach. Learn. 24(2), 123–140 (1996)zbMATHGoogle Scholar
  11. 11.
    Ho, T.K.: Random decision forest. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition. Montreal, Canada, pp. 278–282 (1995)Google Scholar
  12. 12.
    Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)CrossRefGoogle Scholar
  13. 13.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., Burlington (1993)Google Scholar
  14. 14.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  15. 15.
    Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-59119-2_166CrossRefGoogle Scholar
  16. 16.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Wenzhe Zhang
    • 1
    Email author
  • Wenwei Tao
    • 1
  • Song Liu
    • 1
  • Yang Su
    • 1
  • Zhaohui Hu
    • 2
  • Chao Hu
    • 3
  1. 1.CSG Power Dispatching Control CenterGuangzhouChina
  2. 2.Dingxin Information Technology Co., Ltd.GuangzhouChina
  3. 3.NARI Information and Communication Technology Co., Ltd.NanjingChina

Personalised recommendations