Advertisement

Seamless Tool Chain for the Verification, Validation and Homologation of Automated Driving

  • Andrea LeitnerEmail author
  • Jürgen Holzinger
  • Hannes Schneider
  • Michael Paulweber
  • Nadja Marko
Chapter

Abstract

Validation of highly automated or autonomous vehicles is still a major challenge for the automotive industry. Demonstrating the reliability, safety, and robustness of automated driving technology in all conceivable situations, e.g. in all possible situations under all potential environmental conditions is not possible in real world tests. Additional virtual testing is required. At the end, a mixture of virtual and real-world tests, the validation of the virtual test environment as well as a reasonable coverage of realistic test scenarios which statistically cover the expected real-world situations will be required. This paper discusses a seamless validation framework, which aims to overcome the challenges of testing automated systems in general and automated driving functions in concrete.

References

  1. 1.
    Koopman, P.: The Heavy Tail Safety Ceiling; Automated and Connected Vehicle Systems Testing Symposium 2018Google Scholar
  2. 2.
    Winner, H., Wachenfeld, W.: Effects of autonomous driving on the vehicle concept. In: Autonomous Driving: Technical, Legal and Social Aspects, pp. 255–275 (2016)Google Scholar
  3. 3.
    Ahmetcan, E., Kaplan, E., Leitner, A., Nager, M.: Parametrized end-to-end scenario generation architecture for autonomous vehicles. In: CEIT Conference 2018, Istanbul (2018)Google Scholar
  4. 4.
    Schneider, H., Weck, T.: Efficient active-safety-testing using advanced on-road data analysis and simulation. In: SIMVEC Conference (2018)Google Scholar
  5. 5.
    Beglerovic, H., Ravi, A., Wikström, N., Koegeler, H.M., Leitner, A., Holzinger, J.: Model-based safety validation of the automated driving function highway pilot. In: Pfeffer, P. (ed.) Proceedings of 8th International Munich Chassis Symposium 2017. Springer, Wiesbaden (2017)Google Scholar
  6. 6.
    Hanke, T., Hirsenkorn, N., Van-Driesten, C., Gracia-Ramos, P., Schiementz, M., Schneider, S.: Open simulation interface: a generic interface for the environment perception of automated driving functions in virtual scenarios: research report. http://www.hot.ei.tum.de/forschung/automotive-veroeffentlichungen/ (2017). Accessed 28 Aug 2017
  7. 7.
    Moten, S., Celiberti, F., Grottoli, M., van der Heide, A., Lemmens, Y.: X-in-the-loop advanced driving simulation platform for the design, development, testing and validation of ADAS. In: Intelligent Vehicle Conference (2018)Google Scholar
  8. 8.
    Schyr, C., Brissard, A.: Driving Cube—a novel concept for validation of powertrain and steering systems with automated driving. In: Advanced Vehicle Control: Proceedings of the 13th International Symposium on Advanced Vehicle Control (AVEC’16), Munich, Germany, 13–16 September 2016, p. 79. CRC Press (2016)Google Scholar
  9. 9.
    Förster, M., Hettel, R., Schyr, C., Pfeffer, P.E.: Lateral dynamics on the vehicle test bed – a steering force module as a validation tool for autonomous driving functions. In: Pfeffer, P. (ed.) Proceedings of 9th International Munich Chassis Symposium 2018. Springer, Wiesbaden (2019)Google Scholar
  10. 10.
    Gruber, A., et al.: Highly scalable radar target simulator for autonomous driving test beds. In: 2017 European Radar Conference (EURAD), Nuremberg, pp. 147–150.  https://doi.org/10.23919/EURAD.2017.8249168
  11. 11.
    Gietelink, O.J., Ploeg, J., De Schutter, B., Verhaegen, M.: VEHIL: test facility for fault management testing of advanced driver assistance systems. In: Proceedings of the 10th World Congress on Intelligent Transport Systems and Services(ITS), Madrid, Spain, 16–20 November 2003. Paper 2639Google Scholar
  12. 12.
    T. European New Car Assessment Programme. Test protocol – AEB systems, EuroNCAP, Test Protocol 1.0, July 2013Google Scholar
  13. 13.
    Knauss, A., Berger, C., Eriksson, H., Lundin, N., Schroeder, J.: Proving ground support for automation of testing of active safety systems and automated vehicles. In: Fourth International Symposium on Future Active Safety Technology Toward Zero Traffic Accidents (FASTzero) (2017)Google Scholar
  14. 14.
    Robert, G.: Sargent, verification and validation of simulation models. In: Jain, S., Creasey, R.R., Himmelspach, J., White, K.P., Fu, M. (eds.) Proceedings of the 2011 Winter Simulation Conference. IEEE Press, Piscataway, NJ (2011)Google Scholar
  15. 15.
    Winner, H., Wachenfeld, W., Junietz, P.: Auf welcher Basis könnte das automatisierte Fahren abgesichert und freigegeben werden? VDI Wissensforum, Newsletter Automobil-Elektronik Ausgabe 02/2018 (2018)Google Scholar
  16. 15.
    Leitner, A.: Generic test architecture ENABLE-S3. Technical Report. https://www.enable-s3.eu/ (2018)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrea Leitner
    • 1
    Email author
  • Jürgen Holzinger
    • 1
  • Hannes Schneider
    • 1
  • Michael Paulweber
    • 1
  • Nadja Marko
    • 2
  1. 1.AVL List GmbHGrazAustria
  2. 2.Virtual Vehicle Research CenterGrazAustria

Personalised recommendations