Advertisement

Radar Signal Processing Chain for Sensor Model Development

  • Martin HolderEmail author
  • Zora Slavik
  • Thomas D’hondt
Chapter

Abstract

Originally intended as surveillance sensors in maritime and aerospace domain, radar sensors are now key sensors for many autonomous systems [1] across domains with an increasing number of applications and functionalities. Compared to lidar and other optical sensors, radar is more robust against adverse weather conditions. Because of the low specific rain attenuation at 77 GHz within automotive ranges of interest [3, 4], radar shows less vulnerability towards adverse environmental conditions in automotive applications for automated cyber-physical systems (ACPS). Its ability to measure relative velocity to targets adds valuable information to ACPS applications, which include adaptive cruise control (ACC) for the use case “highway pilot”, blind spot detection in the use case “intersection crossing”, or fleet coordination for automated farming.

References

  1. 1.
    Meinel, H.: Evolving automotive radar – From the very beginnings into the future. In: The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, 2014Google Scholar
  2. 2.
    ITU-R: Propagation data required for the design of terrestrial free-space optical links. ITU, Geneva, 2012Google Scholar
  3. 3.
    ITU-R: Specific attenuation model for rain for use in prediction methods. Recommendation ITU-R P.838-3, Geneva, 2005Google Scholar
  4. 4.
    Hassen, A.A.: Indicators for the Signal Degradation and Optimization of Automotive Radar Sensors Under Adverse Weather Conditions. Technische Universität Darmstadt, Darmstadt (2007)Google Scholar
  5. 5.
    Meng, X.W., Qu, D.C., He, Y.: CFAR detection for range-extended target in Gaussian background. J. Syst. Eng. Electron. 27, 1012–1015 (2005)Google Scholar
  6. 6.
    Alexandrov, N., Rabinovich, V.: Antenna Arrays and Automotive Applications. Springer, New York (2013)Google Scholar
  7. 7.
    Holder, M., Makkapati, V., Rosenberger, P., D’hondt, T., Slavik, Z., Maier, M., Schreiber, H., Magosi, Z., Winner, H., Bringman, O., Rosenstiel, W.: Measurements revealing challenges in radar sensor modeling for virtual validation of autonomous driving. IEEE International Conference on Intelligent Transportation Systems, 2018Google Scholar
  8. 8.
    Roth, E., Dirndorfer, T. J., Knoll, A., et al.: Analysis and validation of perception sensor models in an integrated vehicle and environment simulation. In: Proceedings of the 22nd Enhanced Safety of Vehicles Conference (ESV), 2011Google Scholar
  9. 9.
    Bernsteiner, S., Magosi, Z., Lindvai-Soos, D., et al.: Radar sensor model for the virtual development process. ATZelektronik Worldwide. 10(2), 46–53 (2015)CrossRefGoogle Scholar
  10. 10.
    Ling, H., Chou, R.C., Lee, S.W.: Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity. IEEE Trans. Antennas Propag. 34(2), 194–2015 (1989)CrossRefGoogle Scholar
  11. 11.
    Herz, G., Schick, B., Hettel, R., Meinel, H.: Sophisticated sensor model framework providing real sophisticated sensor model framework providing realistic radar sensor behavior in virtual environments. Graz Symposium Virtual Vehicle, 2017Google Scholar
  12. 12.
    Hirsenkorn, N., Hanke, T., Rauch, A., Dehlink, B., Rasshofer, R., Biehl, E.: Virtual sensor models for real-time applications. Adv. Radio Sci. 14, 31–37 (2016)CrossRefGoogle Scholar
  13. 13.
    Maier, M., Makkapati, V.P., Horn, M.: Adapting phong into a simulation for stimulation of automotive radar sensors. IEEE MTT-S International Conference on Microwaves for Intelligent Mobility, 2018Google Scholar
  14. 14.
    Wheeler, T.A., Holder, M., Winner, H., Kochenderfer, M.J.: Deep stochastic radar models. IEEE Intelligent Vehicles Symposium, 2017Google Scholar
  15. 15.
    Schuler, K., Becker, D., Wiesbeck, W.: Extraction of virtual scattering centers of vehicles by ray-tracing simulations. IEEE Trans. Antennas Propag. 56(11), 3543–3551 (2008)CrossRefGoogle Scholar
  16. 16.
    Bühren, M., Yang, B.: Simulation of automotive radar target lists using a novel approach of object representation. IEEE Intelligent Vehicles Symposium, 2006Google Scholar
  17. 17.
    Buddendick, H., EIbert, T., Hasch, J.: Bistatic scattering center models for the simulation of wave propagation in automotive radar systems. German Microwave Conference Digest Papers, 2010, pp. 288–291Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Automotive EngineeringTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Stiftung FZI Forschungszentrum InformatikKarlsruheGermany
  3. 3.Siemens Industry Software NVLeuvenBelgium

Personalised recommendations