Advertisement

Fairshare Scheduling

  • Art Sedighi
  • Milton Smith
Chapter

Abstract

Many scheduling systems use fair-share or proportional-fair-share algorithms (Kay and Lauder 1988). Fair-share schedulers were initially designed to manage the time allocations of processors in uniprocessor systems with workloads consisting of long-running, computer-bound processes (Kleban and Clearwater 2003). Each user was assigned a time slot on a machine (i.e. a mainframe), and in this time slot, the user’s job was the highest priority. If there were any other jobs, they were stopped and restarted at a later time.

Keywords

Fairshare Kay and lauder Kleban Lottery-based scheduling Scheduling algorithm Dynamicity FUD Social justice Welfare economics Utilitarianism Aristotle’s equity principle Rawls’s theory of justice Nash’s bargaining theory Most advantaged user MAU Least advantaged user LAU Fairness Seem-fair Response time Wait time Slowdown Utilization Capacity loss Utility Welfare Game theory Van Neumann Cardinal utility Ordinal utility Pareto Bentham Total utility Marginal utility Experienced utility Decision utility FUD 

References

  1. M.J. Bach, The design of the UNIX operating system (Prentice-Hall, Inc, New Delhi, 1986a)Google Scholar
  2. M.J. Bach, The design of the UNIX operating system, vol 5 (Prentice-Hall, Englewood Cliffs, 1986b)Google Scholar
  3. J. Bentham, An introduction to the principles of morals and legislation (Clarendon Press, Oxford, 1879)Google Scholar
  4. L.v. Bertalanffy, General system theory; foundations, development, applications (G. Braziller, New York, 1969)Google Scholar
  5. D. Bertsimas, V.F. Farias, N. Trichakis, The price of fairness. Oper. Res. 59(1), 17–31 (2011)MathSciNetCrossRefGoogle Scholar
  6. H. V. Bui, Fairshare scheduling-a case study, University of Arkansas, (2008)Google Scholar
  7. F.Y. Edgeworth, The hedonical calculus. Mind 4(15), 394–408 (1879)CrossRefGoogle Scholar
  8. D.H. Epema, J. de Jongh, Proportional-share scheduling in single-server and multiple-server computing systems. ACM SIGMETRICS Perform. Eval. Rev. 27(3), 7–10 (1999)CrossRefGoogle Scholar
  9. N. Georgescu-Roegen, Utility. Int. Enc. Soc. Sci. 16(1), 236–267 (1968)Google Scholar
  10. G.J. Henry, The unix system: The fair share scheduler. AT&T Bell. Labs. Tech. J. 63(8), 1845–1857 (1984)CrossRefGoogle Scholar
  11. J. Kay, P. Lauder, A fair share scheduler. Commun. ACM. 31(1), 44–55 (1988)CrossRefGoogle Scholar
  12. S. D. Kleban, S. H. Clearwater, Fair share on high performance computing systems: What does fair really mean? Paper presented at the Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on (2003)Google Scholar
  13. R. Layard, Income and happiness: Rethinking economic policy, Lecture (2003)Google Scholar
  14. R. D. Luce, H. Raiffa, Games and decisions: Introduction and critical survey. (Courier Corporation 2012)Google Scholar
  15. J. F. Nash Jr, The bargaining problem. Econometrica: Journal of the Econometric Society, 155-162 (1950)MathSciNetCrossRefGoogle Scholar
  16. J. Norstad, An introduction to utility theory (1999). Unpublished manuscript at http://homepage.mac.com/j.norstad
  17. V. Pareto, Manuale di economia politica con una introduzione alla scienza sociale (manual of political economy) (Societa Editrice Libraria, Milano, 1919)Google Scholar
  18. J. Rawls, Justice as fairness: A restatement (Harvard University Press, Cambridge, 2001)Google Scholar
  19. J. Rawls, A theory of justice. (Harvard university press, 2009)Google Scholar
  20. D. Read, Utility theory from jeremy bentham to daniel kahneman (2004)Google Scholar
  21. G. Sabin, G. Kochhar, P. Sadayappan, (2004 15–18 Aug. 2004). Job fairness in non-preemptive job scheduling. Paper presented at the Parallel processing, 2004. ICPP 2004. International Conference onGoogle Scholar
  22. A. Sedighi, M. Smith, Y, Deng, (2017a, November 3rd–5th 2017). An evaluation of optimizing for FUD in scheduling for shared computing environments. Paper presented at the 2nd IEEE International Conference on Smart Cloud (SmartCloud 2017), New YorkGoogle Scholar
  23. A. Sedighi, M. Smith, Y. Deng, FUD – Balancing scheduling parameters in shared computing environments. Paper presented at the 4th IEEE International Conference on Cyber Security and Cloud Computing (IEEE CSCloud 2017) (New York 2017b)Google Scholar
  24. R.A. Shiner, Aristotle’s theory of equity. Loy. LAL Rev. 27, 1245 (1993)Google Scholar
  25. R. Sugden, Rational choice: A survey of contributions from economics and philosophy. Econ. J. 101(407), 751–785 (1991)MathSciNetCrossRefGoogle Scholar
  26. S. Tezuka, H. Murata, S. Tanaka, S. Yumae, Monte Carlo grid for financial risk management. Futur. Gener. Comput. Syst. 21(5), 811–821 (2005)CrossRefGoogle Scholar
  27. J. Von Neumann, O. Morgenstern, Theory of games and economic behavior (Princeton university press, Princeton, 2007)zbMATHGoogle Scholar
  28. C. A. Waldspurger, W. E. Weihl, Lottery scheduling – flexible proportional-share resource management. Operating Systems Design and Implementation (Osdi), 1–11 (1994)Google Scholar
  29. C. A. Waldspurger, W. E. Weihl, Stride scheduling: Deterministic proportional share resource management: Massachusetts institute of technology. Laboratory for computer science (1995)Google Scholar
  30. A. Wierman, Fairness and scheduling in single server queues. Surv. Oper. Res. Manag. Sci. 16(1), 39–48 (2011)Google Scholar
  31. H.P. Young, Equity: in theory and practice (Princeton University Press, Princeton, 1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Art Sedighi
    • 1
  • Milton Smith
    • 1
  1. 1.Industrial, Manufacturing & Systems EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations