Scheduling in High Performance Computing

  • Art Sedighi
  • Milton Smith


This chapter provides background information relevant to our objectives:


Multi-criteria scheduler Fairness Performance characteristics Scheduling Scheduling theory Shared computing High-performance computing NP-hard Single-machine problem Flow-shop scheduling Job-shop scheduling Open-shop scheduling Parallel-machine scheduling Local scheduling Global scheduling Static scheduling Dynamic scheduling Optimal scheduling Suboptimal scheduling MPP Massively parallelizable problem 


  1. M.J. Bach, The design of the UNIX operating system (Prentice-Hall, Inc, New Delhi, 1986a)Google Scholar
  2. M.J. Bach, The design of the UNIX operating system, vol 5 (Prentice-Hall, Englewood Cliffs, 1986b)Google Scholar
  3. K.R. Baker, D. Trietsch, Principles of sequencing and scheduling (Wiley, New Jersey, 2013)zbMATHGoogle Scholar
  4. L.v. Bertalanffy, General system theory; foundations, development, applications (G. Braziller, New York, 1969)Google Scholar
  5. P. Brucker, B. Jurisch, B. Sievers, A branch and bound algorithm for the job-shop scheduling problem. Discret. Appl. Math. 49(1), 107–127 (1994)MathSciNetCrossRefGoogle Scholar
  6. P. Brucker, S. Knust, Complex scheduling, 2nd edn. (Springer, Heidelberg, 2012)CrossRefGoogle Scholar
  7. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The data grid: Towards an architecture for the distributed management and analysis of large scientific datasets. J. Netw. Comput. Appl. 23(3), 187–200 (2000)CrossRefGoogle Scholar
  8. G. Christodoulou, L. Gourves, F. Pascual. Scheduling selfish tasks: about the performance of truthful algorithms Computing and Combinatorics, (Springer, 2007), pp. 187–197Google Scholar
  9. F. Dong, S. G. Akl, Scheduling algorithms for grid computing: State of the art and open problems: Technical report (2006)Google Scholar
  10. D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, P. Wong, Theory and practice in parallel job scheduling, in Job scheduling strategies for parallel processing, ed. by D. Feitelson, L. Rudolph, vol. 1291, (Springer, Heidelberg, 1997), pp. 1–34CrossRefGoogle Scholar
  11. D. Ferraioli, C. Ventre, On the price of anarchy of restricted job scheduling games. Paper presented at the ICTCS (2009)Google Scholar
  12. I. Foster, C. Kesselman, The Grid 2: Blueprint for a new computing infrastructure: (Elsevier 2003)Google Scholar
  13. H. Hussain, S.U.R. Malik, A. Hameed, S.U. Khan, G. Bickler, N. Min-Allah, et al., A survey on resource allocation in high performance distributed computing systems. Parallel. Comput. 39(11), 709–736 (2013)MathSciNetCrossRefGoogle Scholar
  14. H. A. James, Scheduling in metacomputing systems Citeseer (1999)Google Scholar
  15. J. Kay, P. Lauder, A fair share scheduler. Commun. ACM. 31(1), 44–55 (1988)CrossRefGoogle Scholar
  16. R. G. Parker, Deterministic scheduling theory. (CRC Press, 1996)Google Scholar
  17. C. Potts, L.N. van Wassenhove, Single machine tardiness sequencing heuristics. IIE Trans. 23(4), 346–354 (1991)CrossRefGoogle Scholar
  18. A. Sedighi, Y. Deng, P. Zhang, Fariness of task scheduling in high performance computing environments. Scalable Computing: Pract. Experience 15(3), 273–285 (2014). Scholar
  19. A. Sedighi, M. Smith, Y, Deng, (2017a, November 3rd–5th 2017). An evaluation of optimizing for FUD in scheduling for shared computing environments. Paper presented at the 2nd IEEE International Conference on Smart Cloud (SmartCloud 2017), New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Art Sedighi
    • 1
  • Milton Smith
    • 1
  1. 1.Industrial, Manufacturing & Systems EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations