Advertisement

si3-Industry: A Sustainable, Intelligent, Innovative, Internet-of-Things Industry

  • Akshi Kumar
  • Anand NayyarEmail author
Chapter
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Industry 4.0 is a digital revolution being witnessed in the present generation whereby the aim is to digitize the entire manufacturing process with minimal human or manual intervention. The aim is to encompass as many industries as feasible and adapt and enhance the existing technologies to better suit the needs of digital manufacturing. Concepts like smart manufacturing, smart factories and Industrial Internet of Things (IIoT) are some of the key buzzwords of industry 4.0. The success of industry 4.0 lies to a large extent in successful integration and adaptation of various existing and emerging technologies with the present manufacturing process. This chapter aims to provide a comprehensive introduction to the basic concept of industry 4.0 including how it came up, the principles, building blocks and the key technologies and concepts around which it is built and is targeted to develop. To incorporate or upgrade to industry 4.0, any business or organization must undergo many complicated and time-consuming procedures to transit and incorporate the concepts and strategies of industry 4.0 into their current methodologies and techniques. The aspects of maturity and feasibility with respect to the business scenario are also discussed. Industry 4.0 incorporates technologies from a wide range of domains and in turn demands massive changes like those in innovation, production, logistics and service processes. These are also discussed. The chapter concludes with the concept of sustainability as applicable to industry 4.0.

Keywords

Industry 4.0 IIOT UN sustainable goals Industrial net Evolution of industrial revolution Technology pillars of industry 4.0 Industry 4.0 maturity model 

References

  1. 1.
    H. Rauen, Industry 4.0 – The Technological Revolution Continues [Video], (2012) (Speaker) Retrieved January 12, 2016, from www.vdma.org/videoitem-display/videodetail/3019396www.vdma.org/video-item-display/-/videodetail/3019396
  2. 2.
    Götz, M., & Jankowska, B. (2017). Clusters and Industry 4.0–do they fit together?. European Planning Studies, 25(9), 1633-1653.Google Scholar
  3. 3.
    Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6(4), 239-242.Google Scholar
  4. 4.
    Bauernhansl, T., Ten Hompel, M., & Vogel-Heuser, B. (Eds.). (2014). Industrie 4.0 in Produktion, Automatisierung und Logistik: Anwendung-Technologien-Migration (pp. 1-648). Wiesbaden: Springer Vieweg.Google Scholar
  5. 5.
    Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 Perspective. International journal of mechanical, industrial science and engineering, 8(1), 37-44.Google Scholar
  6. 6.
    Kagermann, H., Wahlster, W., Helbig, J., Hellinger, A., & Karger, R. (2012). Im Fokus: das Zukunftsprojekt Industrie 4.0: Handlungsempfehlungen zur Umsetzung. Bericht der Promotorengruppe Kommunikation. Forschungsunion.Google Scholar
  7. 7.
    Industrial Internet Consortium, Industrial Internet Reference Architecture, Version 1.7, 2015.Google Scholar
  8. 8.
    Presentation at the French Embassy in the Germany, “Industry of the future”, 2015. Available at. http://www.ambafrance-de.org/Vorstellung-des-neuen-franzosischen-Plans-Industrie-du-Futur-in-der-Botschaft. Last accessed: 24.11.2016
  9. 9.
    The State Council of the People’s Republic of China, “Made in China 2025”, Available at: http://english.gov.cn/2016special/madeinchina2025/. Last accessed: 24.11.2016.
  10. 10.
    Hermann, M., Pentek, T., & Otto, B. (2016, January). Design principles for industrie 4.0 scenarios. In 2016 49th Hawaii international conference on system sciences (HICSS) (pp. 3928-3937). IEEE.Google Scholar
  11. 11.
    Thomas Bauernhansl, Jörg Krüger, Gunther Reinhart, Günther Schuh: Wgp-Standpunkt Industrie4.0, Wissenschaftliche Gesellschaft für Produktionstechnik Wgp e. v., 2016.Google Scholar
  12. 12.
    Rojko, A. (2017). Industry 4.0 concept: background and overview. International Journal of Interactive Mobile Technologies (iJIM), 11(5), 77-90.CrossRefGoogle Scholar
  13. 13.
    Lee, H. Kao and S. Yang, “Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment”, Procedia CIRP, vol. 16, pp. 3-8, 2014. Available:  https://doi.org/10.1016/j.procir.2014.02.001.CrossRefGoogle Scholar
  14. 14.
    K. Zhou, Taigang Liu and Lifeng Zhou, “Industry 4.0: Towards future industrial opportunities and challenges,” 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, 2015, pp. 2147-2152.Google Scholar
  15. 15.
    Gilchrist, A. (2016). Introducing Industry 4.0. In Industry 4.0 (pp. 195-215). Apress, Berkeley, CA.Google Scholar
  16. 16.
    Kumar, A., & Khorwal, R. (2017). Firefly algorithm for feature selection in sentiment analysis. In Computational Intelligence in Data Mining (pp. 693-703). Springer, Singapore.Google Scholar
  17. 17.
    Y, Lu, “Industry 4.0: A survey on technologies, applications and open research issues”, Journal of Industrial Information Integration, vol. 6, pp. 1-10, 2017. Available:  https://doi.org/10.1016/j.jii.2017.04.005.CrossRefGoogle Scholar
  18. 18.
    Gilchrist, A. (2016). Industry 4.0: the industrial internet of things. Apress.Google Scholar
  19. 19.
    A. Gilchrist, “Middleware Industrial Internet of Things Platforms,” in Industry 4.0, Springer, 2016, pp. 153-160.Google Scholar
  20. 20.
    B. Yan and G. Huang, “Supply chain information transmission based on RFID and internet of things,” in 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, 2009Google Scholar
  21. 21.
    R. Xu, L. Yang and S. H. Yang, “Architecture Design of Internet of Things in Logistics Management for Emergency Response,” in Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing, 2013.Google Scholar
  22. 22.
    B. Karakostas, “A DNS architecture for the internet of things: A case study in transport logistics,” Procedia Computer Science, vol. 19, pp. 594-601, 2013.CrossRefGoogle Scholar
  23. 23.
    Jain, D. K., Kumar, A., Sangwan, S. R., Nguyen, G. N., & Tiwari, P. (2019). A Particle Swarm Optimized Learning Model of Fault Classification in Web-Apps. IEEE Access, 7, 18480-18489.Google Scholar
  24. 24.
    Gilchrist, A. (2016). Introducing Industry 4.0. In Industry 4.0(pp. 195-215). Apress, Berkeley, CA.Google Scholar
  25. 25.
    Gorecky, D., Schmitt, M., Loskyll, M., & Zühlke, D. (2014, July). Human-machine-interaction in the industry 4.0 era. In Industrial Informatics (INDIN), 2014 12th IEEE International Conference on (pp. 289)Google Scholar
  26. 26.
    Kumar, A., & Jaiswal, A. (2019). Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurrency and Computation: Practice and Experience, e5107.Google Scholar
  27. 27.
    R. Drath, A. Horch, Industrie 4.0: Hit or Hype? [Industry Forum]. Industrial Electronics Magazine, IEEE 8 (2014) 56-58.CrossRefGoogle Scholar
  28. 28.
    Alzubi, J., Nayyar, A., & Kumar, A. (2018, November). Machine learning from theory to algorithms: an overview. In Journal of Physics: Conference Series (Vol. 1142, No. 1, p. 012012). IOP Publishing.Google Scholar
  29. 29.
    Kumar, A., & Sangwan, S. R. (2019). Rumor Detection Using Machine Learning Techniques on Social Media. In International Conference on Innovative Computing and Communications (pp. 213-221). Springer, Singapore.Google Scholar
  30. 30.
    M. Ford, Industry 4.0: Who Benefits? SMT: Surface Mount Technology 30 (2015) 52-55.Google Scholar
  31. 31.
    R. Schmidt, M. Möhring, R.-C. Härting, C. Reichstein, P. Neumaier, P. Jozinović, Industry 4.0 - Potentials for Creating Smart Products: Empirical Research Results, in: W. Abramowicz (Ed.), Business.Google Scholar
  32. 32.
    C.a.R. Hilger, J, Auto-ID integration-a bridge between worlds. German Harting Magazine (2013) 14-15.Google Scholar
  33. 33.
    H. Lasi, P. Fettke, H.-g. Kemper, T. Feld, M. Hoffmann, Industry 4.0. Business & Information Systems Engineering 6 (2014) 239-242.Google Scholar
  34. 34.
    J. A. Simpson, E.S. C. Weiner, and Oxford University Press, Eds., The Oxford English dictionary, 2nd ed. Oxford: Oxford; New York: Clar-endon Press; Oxford University Press, 1989.Google Scholar
  35. 35.
    Bhatia, M. P. S., & Kumar, A. (2010). Paradigm shifts: from pre-web information systems to recent web-based contextual information retrieval. Webology, 7(1), 1.Google Scholar
  36. 36.
    M. Kohlegger, R. Maier, and S. Thalmann, “Understanding Maturity Models Results of a structured Content Analysis,” presented at the I-KNOW ‘09 and I-SEMANTICS ‘09, Graz, Austria, 2009.Google Scholar
  37. 37.
    Industry 4.0: Definition, Design Principles, Challenges, and the Future of Employment, https://www.cleverism.com/industry-4-0/.
  38. 38.
  39. 39.
    Geissbauer R, Vedso J, Schrauf S (2016) Industry 4.0: Building the digital enterprise. Retrieved from PwC Website: https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/ industry-4.0-building-your-digital-enterprise-april-2016.pdf.Google Scholar
  40. 40.
    Gilchrist, A. (2016). Industry 4.0: the industrial internet of things. Apress.Google Scholar
  41. 41.
    Almada-Lobo, F. (2016). The Industry 4.0 revolution and the future of manufacturing execution systems (MES). Journal of innovation management, 3(4), 16-21.CrossRefGoogle Scholar
  42. 42.
    Bhatia, M. P. S., & Khalid, A. K. (2007, November). Contextual proximity based term-weighting for improved web information retrieval. In International Conference on Knowledge Science, Engineering and Management (pp. 267-278). Springer, Berlin, Heidelberg.Google Scholar
  43. 43.
    Schumacher, A., Erol, S., & Sihn, W. (2016). A maturity model for assessing industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP, 52, 161-166.Google Scholar
  44. 44.
    Kumar, A., & Goel, R. (2012, March). Event driven test case selection for regression testing web applications. In IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM-2012) (pp. 121-127). IEEE.Google Scholar
  45. 45.
    K. Lichtblau, V. Stich, R. Bertenrath, M. Blum, M. Bleider, A. Millack, K. Schmitt, E. Schmitz, and M. Schröter, “IMPULS - Industrie 4.0-Readiness,” Impuls-Stiftung des VDMA, Aachen-Köln, 2015.Google Scholar
  46. 46.
    Rockwell Automation. (2016). The Connected Enterprise Maturity Model. Retrieved from Website:http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/ciewp002_-en-p.pdf.
  47. 47.
    IMPULS-Industrie 4.0-Readiness. Impuls-Stiftung des VDMA, Aachen-Köln.Google Scholar
  48. 48.
    A. Sharma, R. Ranjan, “Software Effort Estimation using Neuro Fuzzy Inference System: Past and Present” published in International Journal on Recent Innovation Trends in Computing and Communication (IJRITCC), ISSN: 2321-8169, Vol.5, Issue.8, Pp: 78-83.Google Scholar
  49. 49.
    Schumacher A, Erol S, Sihn W (2016) A maturity model for assessing industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP 52:161–166.CrossRefGoogle Scholar
  50. 50.
  51. 51.
    Kumar, A., & Joshi, A. (2017, March). SentIndiGov-O: an Ontology-based Tool for Sentiment Analysis to Empower Digital Governance. In Proceedings of the 10th International Conference on Theory and Practice of Electronic Governance(pp. 576-577). ACM.Google Scholar
  52. 52.
    Kumar, A., & Sharma, A. (2013). Alleviating sparsity and scalability issues in collaborative filtering based recommender systems. In Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) (pp. 103-112). Springer, Berlin, Heidelberg.Google Scholar
  53. 53.
    Batth, R. S., Nayyar, A., & Nagpal, A. (2018, August). Internet of Robotic Things: Driving Intelligent Robotics of Future-Concept, Architecture, Applications and Technologies. In 2018 4th International Conference on Computing Sciences (ICCS)(pp. 151-160). IEEE.Google Scholar
  54. 54.
    Nayyar, A., Puri, V., & Le, D. N. (2017). Internet of nano things (IoNT): Next evolutionary step in nanotechnology. Nanoscience and Nanotechnology, 7(1), 4-8Google Scholar
  55. 55.
    Nayyar, A., Jain, R., Mahapatra, B., & Singh, A. (2019). Cyber Security Challenges for Smart Cities. In Driving the Development, Management, and Sustainability of Cognitive Cities (pp. 27-54). IGI Global.Google Scholar
  56. 56.
    Gorecky, D., Schmitt, M., Loskyll, M., & Zühlke, D. (2014, July). Human-machine-interaction in the industry 4.0 era. In Industrial Informatics (INDIN), 2014 12th IEEE International Conference on (pp. 289-294). IEEE.Google Scholar
  57. 57.
    Robert, K. W., Parris, T. M., & Leiserowitz, A. A. (2005). What is sustainable development? Goals, indicators, values, and practice. Environment: science and policy for sustainable development, 47(3), 8-21.Google Scholar
  58. 58.
    Labuschagne, C., Brent, A. C., & Van Erck, R. P. (2005). Assessing the sustainability performances of industries. Journal of cleaner production, 13(4), 373-385.Google Scholar
  59. 59.
    Kumar, A., Sharma, A., Sharma, S., & Kashyap, S. (2017, July). Performance analysis of keyword extraction algorithms assessing extractive text summarization. In 2017 International Conference on Computer, Communications and Electronics (Comptelix) (pp. 408-414). IEEE.Google Scholar
  60. 60.
    Rokon Zaman, Industry 4.0 Drives the Sustainable Development Goals, Waves, https://techpolicyviews.com/review-updates/2018/11/18/industry-4-0-drives-the-sustainable-development-goals/
  61. 61.
    Kumar, A., & Bhatia, M. P. S. (2012). Community expert based recommendation for solving first rater problem. International Journal of Computer Applications, 37(10), 7-13.Google Scholar
  62. 62.
    Lukman, R. K., Glavič, P., Carpenter, A., & Virtič, P. (2016). Sustainable consumption and production–Research, experience, and development–The Europe we want. Journal of cleaner production, 138, 139-147.Google Scholar
  63. 63.
    Kumar, A., & Joshi, A. (2017, March). Ontology driven sentiment analysis on social web for government intelligence. In Proceedings of the Special Collection on eGovernment Innovations in India (pp. 134-139). ACM.Google Scholar
  64. 64.
    Das, S., & Nayyar, A. (2019). Innovative Ideas to Manage Urban Traffic Congestion in Cognitive Cities. In Driving the Development, Management, and Sustainability of Cognitive Cities (pp. 139-162). IGI Global.Google Scholar
  65. 65.
    Ranjan, R., & Sharma, A. (2019). Evaluation of Frequent Itemset Mining Platforms using Apriori and FP-Growth Algorithm. arXiv preprint arXiv:1902.10999e.Google Scholar
  66. 66.
    Kumar, A., & Sebastian, T. M. (2012). Machine learning assisted sentiment analysis. In Proceedings of International Conference on Computer Science & Engineering (ICCSE’2012) (pp. 123-130).Google Scholar
  67. 67.
    Kumar, A., Khorwal, R., & Chaudhary, S. (2016). A survey on sentiment analysis using swarm intelligence. Indian J Sci Technol, 9(39), 1-7.Google Scholar
  68. 68.
    Singh, S. P., Nayyar, A., Kaur, H., & Singla, A. (2019). Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms. Scalable Computing: Practice and Experience, 20(2), 433-456.Google Scholar
  69. 69.
    Singh, S. P., Nayyar, A., Kumar, R., & Sharma, A. (2019). Fog computing: from architecture to edge computing and big data processing. The Journal of Supercomputing, 75(4), 2070-2105.Google Scholar
  70. 70.
    Solanki, A., & Nayyar, A. (2019). Green Internet of Things (G-IoT): ICT Technologies, Principles, Applications, Projects, and Challenges. In Handbook of Research on Big Data and the IoT (pp. 379-405). IGI Global.Google Scholar
  71. 71.
    Bhatia, M. P. S., & Kumar, A. (2009). Contextual paradigm for ad hoc retrieval of user-centric web data. IET software, 3(4), 264-275.Google Scholar
  72. 72.
    Kumar, A., Sharma, A., & Arora, A. (2019). Anxious Depression Prediction in Real-time Social Data. arXiv preprint arXiv:1903.10222.Google Scholar
  73. 73.
    Kumar, A., & Sharma, A. (2017). Systematic literature review on opinion mining of big data for government intelligence. Webology, 14(2), 6-47Google Scholar
  74. 74.
    Singh, P., Gupta, P., Jyoti, K., & Nayyar, A. (2019). Research on Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Directions. Scalable Computing: Practice and Experience, 20(2), 399-432.Google Scholar
  75. 75.
    Kaur, A., Gupta, P., Singh, M., & Nayyar, A. (2019). Data Placement in Era of Cloud Computing: a Survey, Taxonomy and Open Research Issues. Scalable Computing: Practice and Experience, 20(2), 377-398.Google Scholar
  76. 76.
    Kumar, A., & Ahmad, N. (2012). ComEx miner: Expert mining in virtual communities. International Journal of Advanced Computer Science and Applications (IJACSA), 3(6).Google Scholar
  77. 77.
    Kumar, A., & Sharma, A. (2019). (1706-3727) SYSTEMATIC LITERATURE REVIEW OF FUZZY LOGIC BASED TEXT SUMMARIZATION. Iranian Journal of Fuzzy Systems.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringDelhi Technological UniversityNew DelhiIndia
  2. 2.Graduate SchoolDuy Tan UniversityDa NangVietnam

Personalised recommendations