Learning Algorithms and Implementation

  • Olga Krestinskaya
  • Alex Pappachen JamesEmail author
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 14)


This chapter provides a brief overview of learning algorithms and their implementations on hardware. We focus on memristor based systems for leaning, as this is one of the most promising solutions to implement deep neural network on hardware, due to the small on-chip area and low power consumption.


  1. 1.
    Azghadi MR., Al-Sarawi S, Iannella N, Abbott D (2012) Design and implementation of BCM rule based on spike-timing dependent plasticity. In: The 2012 international joint conference on neural networks (IJCNN), IEEE, pp 1–7Google Scholar
  2. 2.
    Cheng M, Xia L, Zhu Z, Cai Y, Xie Y, Wang Y, Yang H (2017) Time: a training-in-memory architecture for memristor-based deep neural networks. In: 2017 54th ACM/EDAC/IEEE design automation conference (DAC), pp 1–6,
  3. 3.
    Choe Y (2015) Anti-hebbian learning. In: Encyclopedia of computational neuroscience. Springer, pp 191–193Google Scholar
  4. 4.
    Gerstner W, Kistler WM (2002) Mathematical formulations of hebbian learning. Biol Cybern 87(5–6):404–415CrossRefGoogle Scholar
  5. 5.
    Hasan R, Taha TM (2014) Enabling back propagation training of memristor crossbar neuromorphic processors. In: 2014 International joint conference on neural networks (IJCNN), IEEE, pp 21–28Google Scholar
  6. 6.
    Hasan R, Taha TM, Yakopcic C (2017) On-chip training of memristor crossbar based multi-layer neural networks. Microelectron J 66:31–40CrossRefGoogle Scholar
  7. 7.
    Hassan AM, Yang C, Liu C, Li HH, Chen Y (2017) Hybrid spiking-based multi-layered self-learning neuromorphic system based on memristor crossbar arrays. In: 2017 Design, automation & test in Europe conference & exhibition (DATE), IEEE, pp 776–781Google Scholar
  8. 8.
    Hu X, Feng G, Duan S, Liu L (2017) A memristive multilayer cellular neural network with applications to image processing. IEEE Trans Neural Netw Learn SystGoogle Scholar
  9. 9.
    Kataeva I, Merrikh-Bayat F, Zamanidoost E, Strukov D (2015) Efficient training algorithms for neural networks based on memristive crossbar circuits. In: 2015 International joint conference on neural networks (IJCNN), IEEE, pp 1–8Google Scholar
  10. 10.
    Krestinskaya O, Dolzhikova I, James AP (2018) Hierarchical temporal memory using memristor networks: a survey. IEEE Trans Emerg Top Comput Intell 2(5):380–395. Scholar
  11. 11.
    Krestinskaya O, Ibrayev T, James AP (2018) Hierarchical temporal memory features with memristor logic circuits for pattern recognition. IEEE Trans Comput-Aided Des Integr Circuits Syst 37(6):1143–1156CrossRefGoogle Scholar
  12. 12.
    Krestinskaya O, James AP, Chua LO (2018) Neuro-memristive circuits for edge computing: a review. arXiv preprint arXiv:1807.00962
  13. 13.
    Krestinskaya O, Salama KN, James AP (2018) Analog backpropagation learning circuits for memristive crossbar neural networks. In: 2018 IEEE international symposium on circuits and systems (ISCAS), IEEE, pp 1–5Google Scholar
  14. 14.
    Krestinskaya O, Salama KN, James AP (2018) Learning in memristive neural network architectures using analog backpropagation circuits. IEEE Trans Circuits Syst I: Regul PapersGoogle Scholar
  15. 15.
    Leonard J, Kramer M (1990) Improvement of the backpropagation algorithm for training neural networks. Comput Chem Eng 14(3):337–341CrossRefGoogle Scholar
  16. 16.
    Li B, Wang Y, Wang Y, Chen Y, Yang H (2014) Training itself: mixed-signal training acceleration for memristor-based neural network. In: 2014 19th Asia and South Pacific design automation conference (ASP-DAC), IEEE, pp 361–366Google Scholar
  17. 17.
    Nair MV, Dudek P (2015) Gradient-descent-based learning in memristive crossbar arrays. In: 2015 International joint conference on neural networks (IJCNN), IEEE, pp 1–7Google Scholar
  18. 18.
    Rosenthal E, Greshnikov S, Soudry D, Kvatinsky S (2016) A fully analog memristor-based neural network with online gradient training. In: 2016 IEEE international symposium on circuits and systems (ISCAS), pp 1394–1397,
  19. 19.
    Sheridan PM, Du C, Lu WD (2016) Feature extraction using memristor networks. IEEE Trans Neural Netw Learn Syst 27(11):2327–2336CrossRefGoogle Scholar
  20. 20.
    Smagulova K, Krestinskaya O, James AP (2018) A memristor-based long short term memory circuit. Analog Integr Circuits Signal Process 95(3):467–472CrossRefGoogle Scholar
  21. 21.
    Soudry D, Castro DD, Gal A, Kolodny A, Kvatinsky S (2015) Memristor-based multilayer neural networks with online gradient descent training. IEEE Trans Neural Netw Learn Syst 26(10):2408–2421. Scholar
  22. 22.
    Soudry D, Di Castro D, Gal A, Kolodny A, Kvatinsky S (2013) Hebbian learning rules with memristors. Israel Institute of Technology, Haifa, IsraelGoogle Scholar
  23. 23.
    Srinivasan N, Ravichandran V, Chan K, Vidhya J, Ramakirishnan S, Krishnan S (2002) Exponentiated backpropagation algorithm for multilayer feedforward neural networks. In: Proceedings of the 9th international conference on neural information processing, 2002. ICONIP’02, vol 1. IEEE, pp 327–331Google Scholar
  24. 24.
    Wu X, Saxena V, Zhu K (2015) A CMOS spiking neuron for dense memristor-synapse connectivity for brain-inspired computing. In: 2015 International joint conference on neural networks (IJCNN), IEEE, pp 1–6Google Scholar
  25. 25.
    Zamanidoost E, Bayat FM, Strukov D, Kataeva I (2015) Manhattan rule training for memristive crossbar circuit pattern classifiers. In: 2015 IEEE 9th international symposium on intelligent signal processing (WISP), IEEE, pp 1–6Google Scholar
  26. 26.
    Zhang Y, Wang X, Friedman EG (2018) Memristor-based circuit design for multilayer neural networks. IEEE Trans Circuits Syst I: Regul Pap 65(2):677–686CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Nazarbayev UniversityAstanaKazakhstan

Personalised recommendations