Photobiological Production of Biohydrogen: Recent Advances and Strategy

  • Archita Sharma
  • Shailendra Kumar AryaEmail author
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 10)


Hydrogen is a well-kept, renewable, carbon-neutral, and energy-efficient fuel which is presently being produced entirely with the reformation of fossil fuels. But to be effective and utilizable at an industrial scale, certain issues from economically and environmentally sustainable production point of view still needs clarification. Species range from photosynthetic fermentative bacteria to green microalgae and cyanobacteria have the capacity to produce hydrogen. Producing hydrogen biologically represents a possible channel for the sustainable generation of hydrogen over a large scale, required to fuel a hydrogen economy in near future. Biological processes compared to conventional or physical production methods manifest various edges while conducting at ambient pressure and temperature conditions, without using precious metals for catalyzing reactions. Producing hydrogen biologically is a promising route from an environmental friendly viewpoint. Photobiological hydrogen production is examined as one of the promising technology and started to become a mature technology with significant advances in substituting energy derived from fossil fuels. Withal, the chief bottleneck while developing a practical approach is the low yield associated with it, approximately around 25%, which is comparatively well below from the production of other biofuels with the use of same feedstocks. This chapter introduces the microorganisms for the biohydrogen production, production processes, and types of photobioreactors for the production of hydrogen following certain challenges that exist in this very particular area along with the environmental and economic analysis of the same.


Biofuels Biohydrogen Biophotolysis Microorganisms Photofermentation Photosystem 



I thankfully acknowledge Professor Sanjeev Puri for trusting in me and bestowing me this lucky chance to explore and gain knowledge and excel.


  1. Akkermana I, Janssen M, Rochac J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27:1195–1208CrossRefGoogle Scholar
  2. Amos WA (2004) Updated cost analysis of photobiological hydrogen production from Chlamydomonas reinhardtii green algae. Milestone Completion Report, National Renewable Energy Laboratory, Golden, CO, NREL/MP-560-35593Google Scholar
  3. Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological: fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173CrossRefGoogle Scholar
  4. Basak N, Das D (2007a) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microb Biot 23:31–42CrossRefGoogle Scholar
  5. Basak N, Das D (2007b) Microbial biohydrogen production by Rhodobacter sphaeroides O.U.001 in photobioreactor. In: Proceedings of the world congress on engineering and computer science (WCECS), pp 24–26Google Scholar
  6. Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels frontiers in bioengineering and biotechnology. Mar Biotechnol 90:1–13Google Scholar
  7. Benemann JR (2000) Hydrogen production from microalgae. J Appl Phycol 12:291–300CrossRefGoogle Scholar
  8. Bhutto AW, Bazmi AA, Kardar MN, Yaseen M, Zahedi G, Karim K (2011) Developments in hydrogen production through microbial processes; Pakistan’s prospective. Int J Chem Environ Eng 02:189–205Google Scholar
  9. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809CrossRefGoogle Scholar
  10. Boran E, Özgür E, Vander Burg J, Yücel M, Gündüz U, Eroglu I (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:29–35CrossRefGoogle Scholar
  11. Chang FY, Lin CY (2004) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy 29:33–39CrossRefGoogle Scholar
  12. Chen CY, Chang JS (2006) Enhancing phototropic hydrogen production by solid carrier assisted fermentation and internal optical-fiber illumination. Process Biochem 41:2041–2049CrossRefGoogle Scholar
  13. Chen WH, Chen SY, Khanal SK, Sung S (2006) Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrog Energy 31:2170–2178CrossRefGoogle Scholar
  14. Chen CY, Yang MH, Yeh KL, Liu CH, Chang JS (2008) Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrog Energy 33:4755–4762CrossRefGoogle Scholar
  15. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819CrossRefGoogle Scholar
  16. Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 21:6046–6057CrossRefGoogle Scholar
  17. Das D, Veziroglo TN (2011) Hydrogen production by biological process: a survey of the literature. Int J Hydrog Energy 26:13–28CrossRefGoogle Scholar
  18. Dasgupta CN, Gilbert JJ, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrog Energy 35:10218–10238CrossRefGoogle Scholar
  19. Efremenko EN, Nikolskaya AB, Lyagin IV, Senko OV, Makhlis TA, Stepanov NA et al (2012) Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour Technol 114:342–348CrossRefGoogle Scholar
  20. Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413CrossRefGoogle Scholar
  21. Fan KS, Kan N, Lay J (2006) Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour Technol 97:84–89CrossRefGoogle Scholar
  22. Ferreira AF, Ribau JP, Silva CM (2011) Energy consumption and CO2 emissions of potato peel and sugarcane biohydrogen production pathways, applied to Portuguese road transportation. Int J Hydrog Energy 36:13547–13558CrossRefGoogle Scholar
  23. Florin L, Tsokoglou A, Happe T (2001) A novel type of Fe-hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetical electron transport chain. J Biol Chem 276:6125–6132CrossRefGoogle Scholar
  24. Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T et al (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758CrossRefGoogle Scholar
  25. García-Galán MJ, Gutiérrez R, Uggetti E, Matamoros V, García J, Ferrer I (2018) Use of full-scale hybrid horizontal tubular photobioreactors to process agricultural runoff. Biosyst Eng 166:138–149CrossRefGoogle Scholar
  26. Garrido IM (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964CrossRefGoogle Scholar
  27. Geada P, Vasconcelos V, Vicente A, Fernandes B (2017) Microalgal biomass cultivation. In: Rastogi RP, Madamwar D, Pandey A (eds) Algal green chemistry recent progress in biotechnology. Elsevier, Amsterdam, pp 257–284CrossRefGoogle Scholar
  28. Ghirardi ML, Mohanty P (2010) Oxygenic hydrogen production-current status of the technology. Curr Sci India 98:499–507Google Scholar
  29. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E et al (2000) Microalgae: a green source of renewable hydrogen. Trends Biotechnol 18:506–511CrossRefGoogle Scholar
  30. Ghirardi ML, Dubini A, Yu J, Manaess PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61CrossRefGoogle Scholar
  31. Gosse JL, Engel BJ, Hui JCH, Harwood CS, Flickinger MC (2010) Preservation of H2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures. Biotechnol Prog 26:907–918Google Scholar
  32. Hallenbeck PC (2011) Microbial paths to renewable hydrogen production. Biofuels 2:285–302CrossRefGoogle Scholar
  33. Hallenbeck P, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J of Hydrog Energy 27:1185–1193CrossRefGoogle Scholar
  34. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297CrossRefGoogle Scholar
  35. Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9CrossRefGoogle Scholar
  36. Happe T, Kaminski A (2001) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem (in press)Google Scholar
  37. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84:619–626CrossRefGoogle Scholar
  38. James BD, Baum GN, Perez J, Baum KN (2009) Techno-economic boundary analysis of biological pathways to hydrogen production. In: National renewable energy laboratory, subcontract report NREL/SR-560-46674. Arlington, Virginia: Directed Technologies, Inc, pp 1e193Google Scholar
  39. Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210CrossRefGoogle Scholar
  40. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582CrossRefGoogle Scholar
  41. Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568CrossRefGoogle Scholar
  42. Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production—a review. Bioresour Technol 243:1194–1206CrossRefGoogle Scholar
  43. Kim EJ, Kim JS, Kim MS, Lee JK (2006) Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen. Int J Hydrog Energy 31:531–538CrossRefGoogle Scholar
  44. Koku H, Gunduz U, Yucel M, Turker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U.001. Int J Hydrog Energy 28:381–388CrossRefGoogle Scholar
  45. Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58CrossRefGoogle Scholar
  46. Kosourov SN, Ghirardi ML, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrog Energy 36:2044–2048CrossRefGoogle Scholar
  47. Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190CrossRefGoogle Scholar
  48. Kraemer JT, Bagley DM (2008) Optimization and design of nitrogen sparged fermentative hydrogen production bioreactors. Int J Hydrog Energy 33:6558–6565CrossRefGoogle Scholar
  49. Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21:238–243CrossRefGoogle Scholar
  50. Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 04:957–970CrossRefGoogle Scholar
  51. Lambertz C, Leidel N, Havelius KGV, Noth J, Chernev P, Winkler M, Happe T, Haumann M (2011) Oxygen reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. J Biol Chem 286:40614–40623CrossRefGoogle Scholar
  52. Laurinavichene V, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of sustained hydrogen photoproduction by immobilized, sulfur deprived Chlamydomonas reinhardtii cells. Int J Hydrog Energy 31:659–667CrossRefGoogle Scholar
  53. Lay JJ (2002) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68:269–278CrossRefGoogle Scholar
  54. Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 4:307–315CrossRefGoogle Scholar
  55. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185CrossRefGoogle Scholar
  56. Liebgott PP, Leroux F, Burlat B et al (2010) Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat Chem Biol 6:63–70CrossRefGoogle Scholar
  57. Lindberg P, Schtuz K, Happe T, Lindblad P (2002) A hydrogen producing, hydrogenase—a free mutant strain of Nostoc punctiforme ATCC29133. Int J Hydrog Energy 27:1291–1296CrossRefGoogle Scholar
  58. Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671CrossRefGoogle Scholar
  59. Madigan MT, Martinko JM (2006) Biology of microorganisms. Pearson Prentice Hall, Upper saddle river, NJGoogle Scholar
  60. Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrogen Energy 33:279–286CrossRefGoogle Scholar
  61. Masukawa H, Inoue K, Sakurai H, Wolk CP, Hausinger RP (2010) Genetic engineering of cyanobacteria to enhance biohydrogen production from sunlight and water. Appl Environ Microbiol 76:6741–6750CrossRefGoogle Scholar
  62. Melis A (2002) Green alga hydrogen production: progress, challenges, and prospects. Int J Hydrog Energy 27:1217–1228CrossRefGoogle Scholar
  63. Melis A, Melnicki M (2006) Integrated biological hydrogen production. Int J Hydrog Energy 31:1563–1573CrossRefGoogle Scholar
  64. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000a) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135CrossRefGoogle Scholar
  65. Melis A, Zang L, Forestier M, Ghirardi ML, Seibert M (2000b) Sustained phtobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green algae Chlamydomonas reinhardtii. Plant Physiol 117:129–139Google Scholar
  66. Min HT, Sherman LA (2010) Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 76:4293–4301CrossRefGoogle Scholar
  67. Mohan SV, Bhaskar VY, Krishna MT, Rao NC, Lalit V, Sarma PN (2007) Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pH and substrate composition. Int J Hydrog Energy 32:2286–2295CrossRefGoogle Scholar
  68. Morita M, Watanable Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69:693–698CrossRefGoogle Scholar
  69. Nagarajan D, Lee DJ, Kondo A, Chang JS (2017) Recent insights into biohydrogen production by microalgae—from biophotolysis to dark fermentation. Bioresour Technol 227:373–387CrossRefGoogle Scholar
  70. Nobre BP, Villalobos F, Barragan BE, Oliveira AC, Batista AP, Marques PASS et al (2013) A biorefinery from Nannochloropsis sp. Microalgae extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136CrossRefGoogle Scholar
  71. Nowak J, Florek M, Kwiatek W, Lekki J, Chevallier P, Zieba E et al (2005) Composite structure of wood cells in petrified wood. Mater Sci Eng 25:119–130CrossRefGoogle Scholar
  72. Oey M, Sawyer AL, Ross IL, Hankamer B (2016) Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J 14:1487–1499CrossRefGoogle Scholar
  73. Ozgur E, Mars AE, Peksel B, Louwerse A, Y€ucel M, G€und€uz U et al (2010) Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrog Energy 35:511–517Google Scholar
  74. Pilon L, Berberoglu H (2014) Photobiological hydrogen production. In: Sherif SA, Yogi Goswami D, (Lee) Stefanakos EK, Steinfeld A (eds) Handbook of hydrogen energyGoogle Scholar
  75. Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems, a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrog Energy 27:1257–1264CrossRefGoogle Scholar
  76. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177CrossRefGoogle Scholar
  77. Prince RC, Kheshgi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31CrossRefGoogle Scholar
  78. Romagnoli F, Blumberga D, Pilicka I (2011) Life-cycle assessment of biohydrogen production in photosynthetic processes. Int J Hydrog Energy 36:7866–7871CrossRefGoogle Scholar
  79. Sakurai H, Masukawa H (2007) Promoting R&D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Mar Biotechnol 9:128–145CrossRefGoogle Scholar
  80. Sakurai H, Masukawa H, Kitashima M, Inoue K (2010) A feasibility study of large-scale photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Adv Exp Med Biol 675:291–303CrossRefGoogle Scholar
  81. Saratale GD, Chen SD, Lo YC, Saratale RG, Chang JS (2008) Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation—a review. J Sci Ind Res India 67:962–979Google Scholar
  82. Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnol Rep 15:63–69CrossRefGoogle Scholar
  83. Sherrif SA, Barbir FA, Veziroglu TN (2003) Principles of hydrogen energy production, storage and utilization. J Sci Ind Res 62:46–63Google Scholar
  84. Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrog Energy 29:1355–1363Google Scholar
  85. Show KY, Lee DJ, Chang JS (2011) Bioreactor and process design for biohydrogen production. Bioresour Technol 102:8524–8533CrossRefGoogle Scholar
  86. Singh SS, Upadhyay RS, Mishra AK (2008) Physiological interactions in Azolla-Anabaena system adapting to the salt stress. J Plant Interact 3:145–155CrossRefGoogle Scholar
  87. Skjånes K, Andersen U, Heidorn T, Borgvang SA (2016) Design and construction of a photobioreactor for hydrogen production, including status in the field. J Appl Phycol 28:2205–2223Google Scholar
  88. Srirangan K, Pyne ME, Perry Chou C (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102:8589–8604CrossRefGoogle Scholar
  89. Stal LJ, Krumbein WE (1987) Temporal separation of nitrogen fixation and photosynthesis in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. Arch Microbiol 149:76–80CrossRefGoogle Scholar
  90. Stripp ST, Goldet G, Brandmayr C et al (2009) How oxygen attacks FeFe hydrogenases from photosynthetic organisms. Proc Nat Acad Sci USA 106:17331–17336CrossRefGoogle Scholar
  91. Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147:297–301CrossRefGoogle Scholar
  92. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20CrossRefGoogle Scholar
  93. Tamagnini P, Leita˜o E, Oliveira P, Ferreira D, Pinto F, Harris D et al (2007) Cyanobacterial hydrogenases: diversity, regulation, and applications. FEMS Microbiol Rev 31:692–720Google Scholar
  94. Taoa Y, Hea Y, Wub Y, Liub F, Lib X, Zong W, Zhou Z (2008) Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int J Hydrog Energy 33:963–973CrossRefGoogle Scholar
  95. Tsygankov A (2001) Hydrogen production by purple bacteria: immobilized versus suspension cultures. In: Miyake J, Matsunaga T, Pietro AS (eds) Biohydrogen II. Elsevier Science Ltd, Amsterdam, pp 229–243Google Scholar
  96. Wang LL, Yi T, Zao XZ (2014) A novel flat plate algal bioreactor with horizontal baffles: Structural optimization and cultivation performance. Bioresour Technol 164:20–27CrossRefGoogle Scholar
  97. Weiss A, Patyk A, Schebek L (2011) Nutrient recycling and energy production with microalgae from a life cycle perspective. In: Gesellschaftzur Forderung des Instituts fur Siedlungswasserwirtschaft der Technischen Universitat Braunschweig e.V (ed), Tagungsband 3. Internationales Symposium “Re-Water Braunschweig” 21. und 22. November 2011. Braunschweig: Institut fur Siedlungswasserwirtschaft (vol 81)Google Scholar
  98. Westwood D (2002) The microbiology of drinking water—part 1—water quality and public health. U.K, Environmental Agency, Bristol, U.K.Google Scholar
  99. Weyman PD, Pratte B, Thiel T (2010) Hydrogen production in nitrogenase mutants in Anabaena variabilis. FEMS Microbiol Lett 304:55–61CrossRefGoogle Scholar
  100. Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T (2002) [Fe]-hydrogenases in green algae: photo: fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrog Energy 27:1431–1439CrossRefGoogle Scholar
  101. Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Fermentative hydrogen production from lipid-extracted micro algal biomass residues. Appl Energy 88:3468–3472CrossRefGoogle Scholar
  102. Zhua H, Fang HHP, Zhang T, Beaudette LA (2007) Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 32:4112–4118CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity Institute of Engineering and Technology, Panjab UniversityChandigarhIndia

Personalised recommendations