Advertisement

Anaerobic Digestion: Biogas Production from Agro-industrial Wastewater, Food Waste, and Biomass

  • Carlos E. De Farias SilvaEmail author
  • G. N. S. B. Gois
  • A. K. S. Abud
  • N. C. S. Amorim
  • F. Girotto
  • G. Markou
  • C. M. Carvalho
  • J. Tonholo
  • E. L. Amorim
Chapter
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 10)

Abstract

In this chapter, the biological treatment process of wastewater and biomass, called anaerobic digestion, is discussed. It is a potential bioprocess to produce renewable energy as methane and hydrogen from underestimated and unexploited sources of organic matter. More specifically, this chapter will discuss the types of biodigesters utilized, the operation modes and the main parameters that affect the process, aiming to provide the knowledge to achieve process stability and reproducibility. The operation strategies, such as substrates co-digestion and two-stage process, and biomass pretreatment will be as well discussed in detail. This chapter will focus on some Brazilian agro-industrial effluents (vinasse and manipueira), as well as food wastes, lignocellulosic biomass, and micro/macroalgae for biogas production. To conclude, the overall objective of the chapter is to give general information and possibilities to apply and conduct the anaerobic digestion process.

Keywords

Co-digestion Hydrogen Inoculum treatment Methane Reactors Renewable energy 

Notes

Acknowledgements

C. E. De Farias Silva would like to thank the CNPq (Brazilian National Council for Scientific and Technological Development) for the Postdoctoral Fellowship and financial support. Project numbers: 167490/2017-6 and 407274/2018-9. C. M. Carvalho also thank the fellowship granted by PNPD/PPGQB/CAPES (Selection 2017.2). The institutional and financial support of CNPq, CAPES, FINEP, UFAL and FAPEAL were of great importance to the research development discussed in this chapter.

References

  1. Abud AKS, Silva CEF (2019) Bioethanol in Brazil: status, challenges and perspectives to improve the production. In: Ray RC, Ramachandran S (eds) Bioethanol from food crops: sustainable sources, interventions and challenges. Elsevier, UK, pp 417–443CrossRefGoogle Scholar
  2. Ahring B, Angelidaki I, Johansen K (1992) Anaerobic treatment of manure together with industrial waste. Water Sci Technol 25:311–318CrossRefGoogle Scholar
  3. Amin FR, Khalid H, Zhang H, u Rahman S, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Exp 7:72CrossRefGoogle Scholar
  4. Amorim ELC (2007) Desempenho de reator anaeróbio de leito fluidificado operado sob condições de aumento progressivo da carga orgânica no tratamento de fenol. 2007. 145 f. Dissertação (Mestrado em Engenharia Hidráulica e Saneamento) –Universidade de São Paulo, São Carlos-SPGoogle Scholar
  5. Amorim ELC, Barros AR, Damianovic MHRZ, Silva EL (2009) Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production thorough dark fermentation of glucose. Int J Hydrog Energy 34:783–790CrossRefGoogle Scholar
  6. Amorim N, Alves I, Martins J, Amorim E (2014) Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor. Braz J Chem Eng 31:603–612CrossRefGoogle Scholar
  7. Andrade WR, Xavier CAN, Coca FOCG, Arruda LDO, Santos TMB (2016) Biogas production from ruminant and monogastric animal manure co-digested with manipueira. Arch Zootec 65(251):375–380CrossRefGoogle Scholar
  8. Angelidaki I, Ellegaard L (2003) Codigestion of manure and organic wastes in centralized biogas plants. Appl Biochem Biotechnol 109(1–3):95–105CrossRefGoogle Scholar
  9. Appels L, Lauwers J, Degreve J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011a) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15(9):4295–4301CrossRefGoogle Scholar
  10. Appels L, Assche AV, Willems K, Degreve J, Impe JV, Dewil R (2011b) Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresour Technol 102:4124–4130CrossRefGoogle Scholar
  11. Araujo DM, Duda RM, Oliveira RA (2016) Produção de metano em reatores anaeróbios termofílicos utilizando vinhaça de cana-de-açúcar. Ciência & Tecnologia: Fatec-JB, Jaboticabal, 8:113–118, SuplementoGoogle Scholar
  12. Argun H, Kargi F (2009) Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. Int J Hydrog Energy 34:8543–8551CrossRefGoogle Scholar
  13. Baldacin ACS, Pinto GMF (2015) Biodigestão anaeróbia da vinhaça: aproveitamento energético do biogás. Rev Eletrônica FACP 7:1–17Google Scholar
  14. Barros AR, Adorno MAT, Sakamoto IK, Maintinguer SI, Varesche MBA, Silva EL (2011) Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production. Bioresour Technol 102:3840–3847CrossRefGoogle Scholar
  15. Barros VG, Duda RM, Oliveira RA (2016) Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge. Braz J Microbiol 47:628–639CrossRefGoogle Scholar
  16. Bird KT, Chynoweth DP, Jerger DE (1990) Effects of marine algal proximate composition on methane yields. J Appl Phycol 2(3):207–213CrossRefGoogle Scholar
  17. Bohutskyi P, Ketter B, Chow S, Adams KJ, Betenbaugh MJ, Allnutt FT, Bouwer EJ (2015) Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Biores Tech 183:229–239Google Scholar
  18. Boontian N (2014) Conditions of anaerobic digestion of biomass. Int J Environ Ecol Eng (World Academy of Science, Engineering and Technology) 8(9):1036–1040Google Scholar
  19. Cabello PE, Scognamiglio FP, Terán FJC (2009) Tratamento de vinhaça em reator anaeróbio de leito fluidizado. Engenharia Ambiental 6(1):321–338Google Scholar
  20. Campuzano R, Gonzalez-Martinez S (2016) Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag 54:3–12CrossRefGoogle Scholar
  21. Cappelletti BM, Reginatto V, Amante ER, Antônio RV (2011) Fermentative production of hydrogen from cassava processing wastewater by clostridium acetobutylicum. Renew Energy 36(12):3367–3372CrossRefGoogle Scholar
  22. Cereda MP (2001) Manejo, uso e tratamento de subprodutos da industrialização da mandioca. São Paulo: Fundação Cargill, 320 p. il. (Culturas de tuberosas amiláceas latino americanas, 4)Google Scholar
  23. Chaganti SR, Kimb D-H, Lalman JA (2012) Dark fermentative hydrogen production by mixed anaerobic cultures: effect of inoculum treatment methods on hydrogen yield. Renew Energy 48:117–121CrossRefGoogle Scholar
  24. Chandra R, Takeuchi H, Hasegaw T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16:1462–1476CrossRefGoogle Scholar
  25. Chen L, Neibling H (2014) University of Idaho: anaerobic digestion basics. Accessed Out 04, 2018 https://www.cals.uidaho.edu/edcomm/pdf/CIS/CIS1215.pdf
  26. Chen CC, Lin CY, Chang JS (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57:56–64CrossRefGoogle Scholar
  27. Chernicharo CAL (1997) Reatores Anaeróbios - Princípios do tratamento biológico de águas residuárias, 2nd edn. UFMG. Departamento de Engenharia Sanitária e Ambiental v, Belo Horizonte, p 5Google Scholar
  28. Cho S, Park S, Seon J, Yu J, Lee T (2013) Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol 143:330–336.  https://doi.org/10.1016/j.biortech.2013.06.017CrossRefGoogle Scholar
  29. Cisneros-Perez C, Carrillo-Reyes J, Celis LB, Alatriste-Mondragon F, Etchebehere C, Razo-Flores E (2015) Inoculum pretreatment promotes differences in hydrogen production performance in EGSB reactors. Int J Hydrog Energy 40:6329–6339CrossRefGoogle Scholar
  30. Davidsson Å, Gruyberger C, Christensen TH, Hansen TL, La Cour Jansen J (2007) Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manag 27(3):406–414CrossRefGoogle Scholar
  31. De Gioannis G, Muntoni A, Polettini A, Pomi R (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag 33:1345–1361CrossRefGoogle Scholar
  32. De Gioannis G, Muntoni A, Polettini A, Pomi R, Spiga D (2017) Energy recovery from one-and two-stage anaerobic digestion of food waste. Waste Manag 8:505–602Google Scholar
  33. Del Bianchi VL (1998) Balanço de massa e de energia do processamento de farinha de mandioca em uma empresa de médio porte de Estado de São Paulo. Tese (Doutorado em Agronomia), Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, BotucatuGoogle Scholar
  34. Deganutti R, Palhaci M, Do CJP, Rossi M (2002) Biodigestores rurais: modelo indiano, chinês e batelada. In: Encontro de Energia no Meio Rural, 4, Campinas-SP, Anais eletrônicosGoogle Scholar
  35. Ding L, Cheng J, Xia A, Jacob A, Voelklein M, Murphy JD (2016) Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro-and micro-algal biomass. Bioresour Technol 218:224–231CrossRefGoogle Scholar
  36. Eker S, Sarp M (2017) Hydrogen gas production from waste paper by dark fermentation: effects of initial substrate and biomass concentrations. Int J Hydrog Energy 42(4):2562–2568CrossRefGoogle Scholar
  37. EPA - Environmental Protection Agency. Beneficial Uses of Manure and Environmental Protection. United States Environmental Protection Agency (2015) Disponível em. https://www.epa.gov/npdes/beneficial-uses-manure-and-environmental-protection. Acessado em 01 jul 2018
  38. EPA - Environmental Protection Agency. Recovering Value from Waste: Anaerobic Digester System Basics. United States Environmental Protection Agency. Disponível em. https://www.epa.gov/agstar/recovering-value-waste-anaerobic-digester-system-basics. Acessado em 01 jul 2018
  39. FAO - Food and Agriculture Organization. FAO´s Work on Climate Change. Food and Agriculture Organization of the United Nations, Rome, (2017) Disponível em. http://www.fao.org/3/a-i8037e.pdf. Acessado em 01 jul 2018
  40. Faria AAA (2017) Fermentação metanogênica mesofílica de melaço e termofílica de vinhaça em reatores UASB. Novas Edições Acadêmicas, Editora. ISBN-10: 3330759658; ISBN-13: 978-3330759657Google Scholar
  41. Fernandes BS, Peixoto G, Albrecht FR, Saavedra Del Aguila NK, Zaiat M (2010) Potential to produce biohydrogen from various waste waters. Energy Sustain Dev 14(2):143–148CrossRefGoogle Scholar
  42. Ferraz Júnior AND, Wenzel J, Etchebehere C, Zaiat M (2014) Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. Int J Hydrog Energy 1–11Google Scholar
  43. Gaudencio, BO (2013) Avaliação do desempenho de dois reatores anaeróbios de leito fixo e fluxo ascendente alimentados com efluente de indústria cervejeira. Doctoral dissertation, Universidade de São PauloGoogle Scholar
  44. Gehring CG (2014) Análise da geração de energia elétrica a partir do biogás produzido na fermentação anaeróbica de vinhaça. Trabalho de Conclusão de Curso- Escola de Engenharia Elétrica de São Carlos. 124pGoogle Scholar
  45. Girotto F, Pivato A, Cossu R, Nkeng GE, Lavagnolo MC (2017a) The broad spectrum of possibilities for spent coffee grounds valorisation. J Mater Cycles Waste Manag 1–7.  https://doi.org/10.1007/s10163-017-0621-5
  46. Girotto F, Lavagnolo MC, Pivato A (2017b) Spent Coffee Grounds alkaline pre-treatment as biorefinery option to enhance their anaerobic digestion yield. Waste Biomass Valorization 1–6.  https://doi.org/10.1007/s12649-017-0033-8
  47. Gokfiliz P, Karapinar I (2017) The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. Int J Hydrog Energy 42(4):2553–2561CrossRefGoogle Scholar
  48. Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5(1):47–55Google Scholar
  49. Gonzalez-Fernandez C, Leon-Confreces C, Garcia-Encina PA (2008) Different pretreatments for increasing the anaerobic biodegradability in swine manure. Bioresour Technol 99(18):8710–8714CrossRefGoogle Scholar
  50. Gonzalez-Fernandez C, Sialve B, Molinuevo-Salces B (2015) Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour Technol 198:896–906CrossRefGoogle Scholar
  51. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 97:583–591Google Scholar
  52. Heydt AR, Cremonez PA, Parisotto EIB, Meier TRW, Teleken JG (2015) Biodigestão anaeróbia de resíduos líquidos de fecularia com adição de glicerol em fase termofílica. Revista gestão & sustentabilidade ambiental, Florianópolis, pp 498–514Google Scholar
  53. Hickey RF, Owens RW (1981) Methane generation from high-strength industrial wastes with the anaerobic biological fluidized bed. Biotech Bioengin 23:399–413Google Scholar
  54. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogasutilization. Bioresour Technol 100(2):5478–5484CrossRefGoogle Scholar
  55. ICO - International Coffee Organization (2017) Trade statistics tables. http://www.ico.org/trade_statistics.asp
  56. Instituto Brasileiro de Geografia E Estatística (IBGE) Indicadores IBGE (2018) Estatística da Produção AgrícolaGoogle Scholar
  57. Intanoo P, Chaimongkol P, Chavadej S (2016) Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production. Int J Hydrog Energy 41:6107–6114CrossRefGoogle Scholar
  58. Jankowska E, Sahu AK, Oleskowicz-Popiel P (2017) Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sustain Energy Rev 75:692–709CrossRefGoogle Scholar
  59. Jingura RM, Matengaifa R (2009) Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe. Renew Sustain Energy Rev 13:1116–1120CrossRefGoogle Scholar
  60. Kaparaju P, Angelidaki I (2008) Effect of temperature and active biogas process on passive separation of digested manure. Bioresour Technol 99:1345–1352CrossRefGoogle Scholar
  61. Kargi F, Eren NS, Ozmihci S (2012) Bio-hydrogen production from cheese whey powder (CWP) solution: Comparison of thermophilic and mesophilic dark fermentations. Int J Hydrog Energy 37:8338–8342CrossRefGoogle Scholar
  62. Karthikeyan OP, Visvanathan C (2012) Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester. Bioresour Technol 113:294–302CrossRefGoogle Scholar
  63. Kim J, Park C, Kim TH, Lee M, Kim S, Kim SW, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95(3):271–275CrossRefGoogle Scholar
  64. Kim JK, Oh BR, Chun YN, Kim SW (2006) Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J Biosci Bioeng 102(4):328–332CrossRefGoogle Scholar
  65. Kiran EU, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399CrossRefGoogle Scholar
  66. Kuczman O, Gomes SD, Tavares MHF, Torres DGB, Alcântara MS (2011) Produção específica de biogás a partir de manipueira em reator de fase única. Eng Agríc Jaboticabal 31(1):143–149CrossRefGoogle Scholar
  67. Kumar G, Sivagurunathan P, Kim SH, Bakonyi P, Lin CY (2015) Modeling and optimization of biohydrogen production from de-oiled Jatropha using the response surface method. Arab J Sci Eng 40:15–22CrossRefGoogle Scholar
  68. Lamaison FC (2009) Aplicação da água residuária do processamento da mandioca como substrato para a produção de hidrogênio por processo fermentativo. 83 f. Dissertação (Mestrado em Engenharia Hidráulica e Saneamento) – Universidade Federal de Santa Catarina, Florianópolis-SCGoogle Scholar
  69. Lamaison FC, Reginatto V, Antônio R (2015) Efeito de diferentes pré-tratamentos de cultura mista para o enriquecimento em bactérias produtoras de hidrogênio. XX Congresso Brasileiro de Engenharia Química 1(2):717–724Google Scholar
  70. Lay C-H, Sem B, Huangm S-C, Chen C-C, Lin C-Y (2013) Sustainable bioenergy production from tofu-processing wastewater by anaerobic hydrogen fermentation for onsite energy recovery. Renew Energy 58:60–67CrossRefGoogle Scholar
  71. Lazaro CZ, Perna V, Etchebehere C, Varesche MBA (2014) Sugarcane vinasse as substrate for fermentative hydrogen production: The effects of temperature and substrate concentration. Int J Hydrog Energy 39:6407–6418CrossRefGoogle Scholar
  72. Leitão RC, Claudino RL, De Brito CRF, Alexandre LC, Cassales AR, Pinto GAS, Santaella ST (2011) Produção de Biogás a partir do Bagaço do Caju. Fortaleza (Boletim de pesquisa e desenvolvimento/Embrapa Agroindústria Tropical, ISSN 1679-6543; 51), 43pGoogle Scholar
  73. Lin C-Y, Lay C-H, Sen B, Chu C-Y, Kumar G, Chen C-C, Chang J-S (2012) Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energy 37:15632–15642CrossRefGoogle Scholar
  74. Liu CF, Yuan XZ, Zeng GM, Li WW, Li J (2008) Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour Technol 99(4):882–888CrossRefGoogle Scholar
  75. Loyanh N, Warren J, Sistani K (2010) Determination of ammonia and greenhouse gas emissions from land application of swine slurry: a comparison of three application methods. Bioresour Technol 101(6):1662–1667CrossRefGoogle Scholar
  76. Luning L, Van Zundet EHM, Brinkmann AJF (2003) Comparison of dry and wet digestion for solid waste. Water Sci Technol 48(4):15–20CrossRefGoogle Scholar
  77. Ma J, Duong TH, Smits M, Verstraete W, Carballa M (2011) Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour Technol 102:592–599CrossRefGoogle Scholar
  78. Madsen M, Holm-Nielsen JB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sustain Energy Rev 15:3141–3155CrossRefGoogle Scholar
  79. Mahdy A, Mendez L, Ballesteros M, Gonzalez-Fernandez C (2015) Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 158:35–41.  https://doi.org/10.1016/j.fuel.2015.04.052CrossRefGoogle Scholar
  80. MAPA- Ministério da Agricultura, Agropecuária e Abastecimento- Produção brasileira de cana-de-açúcar, açúcar e etanol, Publicado em: 02/2017 (2017)Google Scholar
  81. Marañón E, Castrillon L, Quiroga G, Fernandez-Nava Y, Gomez L, Garcia MM (2012) Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag 32(10):1821–1825CrossRefGoogle Scholar
  82. Markou G, Angelidaki I, Georgakakis D (2013) Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion. Fuel 111:872–879CrossRefGoogle Scholar
  83. Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev 36:412–427CrossRefGoogle Scholar
  84. Mckennedy J, Sherlock O (2015) Anaerobic digestion of marine macroalgae: a review. Renew Sustain Energy Rev 52:1781–1790.  https://doi.org/10.1016/j.rser.2015.07.101CrossRefGoogle Scholar
  85. Mendez L, Mahdy A, Timmers RA, Ballesteros M, Gonzalez-Fernandez C (2013) Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour Technol 149:136–141.  https://doi.org/10.1016/j.biortech.2013.08.136CrossRefGoogle Scholar
  86. Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sustain Energy Rev 44:888–903CrossRefGoogle Scholar
  87. Mussgnug JH, Klassen V, Schluter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56.  https://doi.org/10.1016/j.jbiotec.2010.07.030CrossRefGoogle Scholar
  88. Mustafa AM, Poulsen TG, Xia Y, Sheng K (2017) Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion. Bioresour Technol 224:174–182CrossRefGoogle Scholar
  89. Nayal FS, Mammadov A, Ciliz N (2016) Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion. J Environ Manag 184(2):389–399CrossRefGoogle Scholar
  90. Nielsen HB, Angelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99(17):7995–8001CrossRefGoogle Scholar
  91. Obruca S, Benesova P, Petrik S, Oborna J, Prikryl R, Marova I (2014) Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochem 49:1409–1414.  https://doi.org/10.1016/j.procbio.2014.05.013CrossRefGoogle Scholar
  92. Oliveira Netto AP (2011) Reator anaeróbio-aeróbio de leito fixo em escala piloto, com recirculação da fase líquida, aplicado ao tratamento de esgoto sanitário. Tese (Doutorado em Engenharia Hidráulica e Saneamento) –Universidade de São Paulo, São Carlos-SPGoogle Scholar
  93. Pages-Diaz J, Pereda-Reyes I, Taherzadeh MJ, Sarvari-Horvath I, Lundin M (2014) Anaerobic co-digestion of solid slaughterhouse wastes with agroresidues: synergistic and antagonistic interactions determined in batch digestion assays. Chem Eng J 245:89–98CrossRefGoogle Scholar
  94. Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P (2010) Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenerg 34(8):1117–1124CrossRefGoogle Scholar
  95. Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P (2012) Enhanced biomethanation in co-digestion of Cassava pulp and pig manure using a two-phase anaerobic system. J Sustain Energy Environ 3:73–79Google Scholar
  96. Passos F, Ferrer I (2014) Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ Sci Technol 48(12):7171–7178.  https://doi.org/10.1021/es500982vCrossRefGoogle Scholar
  97. Passos F, Ferrer I (2015) Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res 68:364–373.  https://doi.org/10.1016/j.watres.2014.10.015CrossRefGoogle Scholar
  98. Passos F, Hernandez-Marine M, Garcia J, Ferrer I (2014a) Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res 49:351–359CrossRefGoogle Scholar
  99. Passos F, Uggetti E, Carrere H, Ferrer I (2014b) Pretreatment of microalgae to improve biogas production: a review. Biores Technol 172:403–412.  https://doi.org/10.1016/j.biortech.2014.08.114CrossRefGoogle Scholar
  100. Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672.  https://doi.org/10.1016/j.cej.2015.05.065CrossRefGoogle Scholar
  101. Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol 245:1194–1205CrossRefGoogle Scholar
  102. Peixoto G, Pantoja Filho JLR, Agnelli JAB, Barboza M, Zaiat M (2012) Hydrogen and methane production, energy recovery, and organic matter removal from effluents in a two-stage fermentative process. Appl Biochem Biotechnol 3:651–671CrossRefGoogle Scholar
  103. Pereira RF, Cardoso EJBN, Oliveira FC, Estrada-Bonilla GA, Cerri CEP (2018) A novel way os assessing C dynamics during urban organic waste composting and greenhouse gas emissions in tropical region. Bioresour Technol 3:35–42CrossRefGoogle Scholar
  104. Pesquisa FAPESP (2015) Tecnologia Engenharia Química. Vinhaça para gerar energia, Revista Pesquisa FAPESP 238:68–71Google Scholar
  105. Pham TPT, Kaushik R, Parshetti GK, Mahmood R, Balasubramanian R (2014) Food-waste-to-energy conversion technologies: current status and future directions. Waste Manag  https://doi.org/10.1016/j.wasman.2014.12.004
  106. Phowan P, Danvirutai P (2014) Hydrogen production from cassava pulp hydrolysate by mixed seed cultures: effects of initial pH, substrate and biomass concentrations. Biomass Bioenergy 64:1–10CrossRefGoogle Scholar
  107. Piccinini S, Animali CRP, Emilia R (2004) Biogas: produzione e prospettive in Italia. Convegno Nazionale sulla Bioenergia, Roma, p 12Google Scholar
  108. Prajapati SK, Kumar P, Malik A, Vijay VK (2014) Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: a closed loop bioenergy generation process. Bioresour Technol 158:174–180CrossRefGoogle Scholar
  109. PROBIOGÁS, Projeto Brasil-Alemanha de Fomento ao Aproveitamento Energético do Biogás no Brasil (2015) Tecnologias de digestão anaeróbia com relevância para o Brasil: substratos, digestores e uso de biogás. Organizadores: Ministério das Cidades, Deutsche Gesellschaftfür Internationale Zusammenarbeit GmbH [GIZ]. Brasília, DF: Ministério das Cidades, 83pGoogle Scholar
  110. Girotto F, Peng W, Rafieenia, R, Cossu R (2016) Effect of aeration applied during different phases of anaerobic digestion. Waste Biomass Valorization 1–14Google Scholar
  111. Rafieenia R, Girotto F, Peng W, Cossu R, Pivato A, Raga R, Lavagnolo MC (2017) Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manag 59:194–199CrossRefGoogle Scholar
  112. Raposo F, Fernandez-Cegrí V, De La Rubia MA, Borja R, Beline F, Cavinato C, Demirer G, Fernandez B, Fernandez-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Mendez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinckm I, De Wildep V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098CrossRefGoogle Scholar
  113. Reis CM, Silva EL (2011) Effect of upflow velocity and hydraulic retention time in anaerobicfluidized-bed reactors used for hydrogen production. Chem Eng J 172(1):28–36CrossRefGoogle Scholar
  114. Reis CM, Carosia MF, Sakamoto IK, Varesche MBA, Silva EL (2015) Evaluation of hydrogen and methane production from sugarcane vinasse in an anaerobic fluidized bed reactor. Int J Hydrog Energy 40(27):8498–8509CrossRefGoogle Scholar
  115. Riaño B, Molinuevo B, García-González MC (2011) Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater. Bioresour Technol 102:4131–4136CrossRefGoogle Scholar
  116. Rojas MDPA (2010) Influência da relação C/N na produção de hidrogênio em reator aneróbio de leito fixo. 67 f. Dissertação (Mestrado em Engenharia Hidráulica e Saneamento) – Universidade de São Paulo, São Carlos-SPGoogle Scholar
  117. Rosa PRF, Gomes BC, Varesche MBA, Silva EL (2016) Characterization and antimicrobial activity of lactic acid bacteria from fermentative bioreactors during hydrogen production using cassava processing wastewater. Chem Eng J 284:1–9CrossRefGoogle Scholar
  118. Rouches E, Zhou S, Steyer JP, Carrere H (2016) White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion: impact of glucose supplementation. Process Biochem 51:1784–1792CrossRefGoogle Scholar
  119. Rozzi A, Remigi E (2004) Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review. Rev Environ Sci Biotechnol 3:93–115CrossRefGoogle Scholar
  120. Saleh MM, Mahmood UF (2004) Anaerobic digestion technology for industrial wastewater treatment. In: Proceedings of the eighth international water technology conference, IWTC, Alexandria, Egypt, pp 26–28Google Scholar
  121. Sambusiti C, Belluci M, Zabaniotou A, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sustain Energy Rev 44:20–36.  https://doi.org/10.1016/j.rser.2014.12.013CrossRefGoogle Scholar
  122. Santana Junior AE (2013) Produção de metano a partir de vinhaça e melaço em reatores UASB termofílicos, em dois estágios. 84f Dissertação (Mestrado em Microbiologia Agropecuária). Faculdade de Ciências Agrárias e Veterinárias – UNESP, Campus de Jaboticabal-SPGoogle Scholar
  123. Santos ELB, Nardi Junior G (2013) Produção de biogás a partir de dejetos de origem animal. Tekhne e Logos 4(2):80–90Google Scholar
  124. Santos SC, Rosa PRF, Sakamoto IK, Varesche MBA, Silva EL (2014) Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage. Bioresour Technol 159:55–63CrossRefGoogle Scholar
  125. Saratale RG, Kumar G, Banu R, Xia A, Periyasamy S, Saratale GD (2018) A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour Technol 262:319–332CrossRefGoogle Scholar
  126. Sattar A, Arslan C, Ji C, Sattar S, Umair M, Sattar S, Bakht MZ (2016) Quantification of temperature effect on batch production of bio-hydrogen from rice crop wastes in an anaerobic bio reactor. Int J Hydrog Energy 41(26):11050–11061CrossRefGoogle Scholar
  127. Schievano A, Tenca A, Scaglia B, Merlino G, Rizzi A, Daffonchio D, Adani F (2012) Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. Environ Sci Technol 46(15):8502–8510CrossRefGoogle Scholar
  128. Schwede S, Rehman Z-U, Gerber M, Theiss C, Span R (2013) Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour Technol 143:505–511.  https://doi.org/10.1016/j.biortech.2013.06.043CrossRefGoogle Scholar
  129. Searmsirimongkol P, Rangsunvigt P, Leethochavalit M, Chadej S (2011) Hydrogen production from alcohol distillery wastewater containing high potassium and sulfate using anaerobic sequencing batch reactor. Int J Hydrog Energy 36:12810–12821CrossRefGoogle Scholar
  130. Seghezzo L, Zeeman G, Van Lier JB, Hamelers HVM, Lettinga G (1998) A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol 65(3):175–190CrossRefGoogle Scholar
  131. Sforza E, Barbera E, Girotto F, Cossu R, Bertucco, A (2017) Anaerobic digestion of lipid-extracted microalgae: enhancing nutrient recovery towards a closed loop recycling. Biochem Eng J 121(Supplement C):139–146.  https://doi.org/10.1016/j.bej.2017.02.004
  132. Shahriari H, Warith M, Hamoda M, Kennedy K (2013) Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment. J Environ Manag 125:74–84CrossRefGoogle Scholar
  133. Shida GM, Amorim ELC, Silva EL (2008) Hydrogen and volatile fatty acids production in anaerobic fluidized bed reactor using heat-treated sludge anaerobic. In: 17th Proceedings Brisbane World hydrogen energy conference (WHEC2008), BrisbaneGoogle Scholar
  134. Silva JL (2009) Desempenho do reator anaeróbio horizontal com chicanas no tratamento da manipueira em fases separadas e estabilização do pH com conchas de sururu. 100 f. Dissertação (Mestrado em Recursos Hídricos e Saneamento). Universidade Federal de Alagoas, Centro de Tecnologia, Maceió-ALGoogle Scholar
  135. Silva CEF, Abud AKS (2016) Anaerobic biodigestion of sugarcane bagasse under mesophilic conditions using manure as inoculum. Ambiente Agua 11(4):763–777CrossRefGoogle Scholar
  136. Silva CO, Cezar VRS, Santos MB, Santos AS (2013) Biodigestão anaeróbia com substrato formado pela combinação de esterco ovinocaprino, manipueira e biofertilizante. Revista Ibero-Americana de Ciências Ambientais, Aquidabã 4(1):88–103.  https://doi.org/10.6008/ESS2179-6858.2013.001.0007CrossRefGoogle Scholar
  137. Sivagurunathan P, Kumar G, Bakonyi P, Kim S-H, Kobayashi T, Xu KQ, Lakner G, Tóth G, Nemestóthy N, Belafi-Bako K (2016) A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int J Hydrog Energy 41(6):3820–3836CrossRefGoogle Scholar
  138. Sosnowski P, Wieczorek A, Ledakowicz S (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res 7(3):609–616CrossRefGoogle Scholar
  139. Speece RE (1983) Anaerobic biotechnology for industrial wastewaters. Environ Sci Technol 17(9):416A–427ACrossRefGoogle Scholar
  140. Sridar V (1998) Microwave radiation as catalyst for chemical reactions. Curr Sci 74:446–450Google Scholar
  141. Sunyoto NMS, Zhu M, Zhang Z, Zhang D (2017) Effect of biochar addition and initial pH on hydrogen production from the first phase of two-phase anaerobic digestion of carbohydrates food waste. In: Energy procedia. The 8th international conference on applied energy – ICAE2016, vol 105, pp 379–384Google Scholar
  142. Suzuki ABP, Feiden A, Fernandes DM, Martins GI, Faria AP (2012) Utilização de manipueira juntamente com sólidos da cama de aviário em biodigestores para geração de biogás. Rev Ambiência 8(3):809–819CrossRefGoogle Scholar
  143. Tavares AC (2008) Modelagem matemática da degradação da glicose, com produção de hidrogênio, em um reator anaeróbio de leito fixo. 2008. 68 f. Dissertação (Mestrado em Engenharia Hidráulica e Saneamento), Universidade de São Paulo, São CarlosGoogle Scholar
  144. Tedesco S, Barroso TM, Olabi AG (2014) A Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas. Renew Energy 62:527–534CrossRefGoogle Scholar
  145. Telles SLN, Filho ENS, Amorim ELC (2018) Produção de hidrogênio a partir da vinhaça de cana-de-açúcar em reator anaeróbio em batelada. Rev DAE 66(211):74–88.  https://doi.org/10.4322/dae.2018.015CrossRefGoogle Scholar
  146. Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102:8582–8588CrossRefGoogle Scholar
  147. Turner J, Sverdrup G, Mann MK, Maness P-C, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Hydrog Energy 32:379–407CrossRefGoogle Scholar
  148. USDA-NRCS - United States Department of Agriculture Natural Resources Conservation Service (USDA-NRCS), (1995). Animal Manure Management, RCA Issue Briefs No. 7. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/null/?cid=nrcs143_014211
  149. Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sustain Energy Rev 13:1000–1013CrossRefGoogle Scholar
  150. Vasmara C, Marchetti R (2017) Initial pH influences in-batch hydrogen production from scotta permeate. Int J Hydrog Energy 42:14400–14408CrossRefGoogle Scholar
  151. Vismara R, Malpei F, Centemero M (2008) Biogas da rifiuti solidi urbani. Dario Flaccovio Editore, 392 pGoogle Scholar
  152. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457CrossRefGoogle Scholar
  153. Wang W, Xie L, Chen J, Luo G, Zhou Q (2013) Enhanced fermentative hydrogen production from cassava stillage by co-digestion: the effects of different co-substrates. Int J Hydrog Energy 38:6980–6988CrossRefGoogle Scholar
  154. Ward AJ, Hobbs PJ, Holliman PJ, Jones L (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940CrossRefGoogle Scholar
  155. Wong Y, Teng Y, Ong S, Norhashimah M, Rafatullah M, Leong J (2014) Methane gas production from palm oil wastewater - An anaerobic methanogenic degradation process in continuous stirrer suspended closed anaerobic reactor. J Taiwan Ins Chem Eng 45:896–900CrossRefGoogle Scholar
  156. Wosiacki G, Cereda MP (2002) Valorização de resíduos do processamento da mandioca. Publ UEPG. Exact Soil Sci Agrarian S Eng 8:27–43Google Scholar
  157. Yang B, Wyamn CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefining 2:26–40CrossRefGoogle Scholar
  158. Yen H, Brune D (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98(1):130–134.  https://doi.org/10.1016/j.biortech.2005.11.010CrossRefGoogle Scholar
  159. Yenigun O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48(5–6):901–911.  https://doi.org/10.1016/j.procbio.2013.04.012CrossRefGoogle Scholar
  160. Zaiat M, Vieira, LGT, Foresti E (1996) Variações espaciais e temporais do monitoramento de parâmetros de desempenho em reator anaeróbio de lodo imobilizado de fluxo horizontal (HAIS) tratando substrato sintético. Anais da 51ª Conferência de Resíduos Industriais de Purdue, Ann Arbor Press, W. Lafayette, IN, EUA, no preloGoogle Scholar
  161. Zanella L, Silva GHR, Nour EAA (2003) Taxa de carregamento orgânico: Influência no desempenho de reatores compartimentados. 23° Congresso Brasileiro de Engenharia Sanitária e Ambiental, Campo Grande/MSGoogle Scholar
  162. Zhang R, El-Mashad HM, Hartman K, Wang F, Liu G, Choate C, Gamble P (2007) Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 98(4):929–935CrossRefGoogle Scholar
  163. Zhang C, Xiao G, Peng L, Su H, Tan T (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176CrossRefGoogle Scholar
  164. Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of foodwaste for biogasproduction. Renew Sustain Energy Rev 38:383–392CrossRefGoogle Scholar
  165. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carlos E. De Farias Silva
    • 1
    • 2
    Email author
  • G. N. S. B. Gois
    • 1
  • A. K. S. Abud
    • 4
  • N. C. S. Amorim
    • 3
  • F. Girotto
    • 5
  • G. Markou
    • 6
  • C. M. Carvalho
    • 2
  • J. Tonholo
    • 2
  • E. L. Amorim
    • 1
  1. 1.Center of Technology, Federal University of AlagoasMaceióBrazil
  2. 2.Institute of Chemistry and Biotechnology, Federal University of AlagoasMaceióBrazil
  3. 3.Federal Institute of AlagoasSatubaBrazil
  4. 4.Department of Food TechnologyFederal University of SergipeSão CristovãoBrazil
  5. 5.Department of Industrial EngineeringUniversity of PadovaPaduaItaly
  6. 6.Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DemeterThessalonikiGreece

Personalised recommendations