Lignocellulosic Biomass for Bioethanol Production Through Microbes: Strategies to Improve Process Efficiency

  • Ajay KumarEmail author
  • Joginder Singh
  • Chinnappan Baskar
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 10)


Lignocellulosic biomass can be a potential source of bioethanol by a microorganism such as yeast and bacteria. Hydrolysis of cellulose resulted in reducing sugars and fermentation of sugar produces bioethanol. Fermentable sugar can be obtained by pretreatment of lignocellulosic biomass which involves physic-chemical techniques along with biological pretreatment. Many fungal organisms such as white fungus and enzymes obtained from them have been reported to carry out the pretreatment process. Several models have been proposed to validate the hydrolysis of cellulose and hemicellulose. Tools of metabolic engineering and genetic engineering are used for the modification of microorganism so that they can utilize the different forms of carbon and perform the fermentation process at a wide range of pH and temperature. Process optimization and kinetic studies of microorganism can help in enhancing the productivity of bioethanol. Monod model and its modifications are used to describe the growth kinetics whereas Leudeking–Piret model for product formation kinetics. Different kinds of unit operations as a tool of downstream processing can be coupled with fermenter to prevent the product toxicity and increase the yield of the ethanol. Thus fuelling the future, the engineered microorganism can be explored for the production of next-generation lignocellulosic bioethanol.


Bioethanol Lignocellulosic biomass Metabolic engineering Microorganisms Pretreatment 


  1. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685CrossRefGoogle Scholar
  2. Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRefGoogle Scholar
  3. Ariyajaroenwong P, Laopaiboon P, Salakkam A, Srinophakun P, Laopaiboon L (2016) Kinetic models for batch and continuous ethanol fermentation from sweet sorghum juice by yeast immobilized on sweet sorghum stalks. J Taiwan Inst Chem Eng 66:210–216CrossRefGoogle Scholar
  4. Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27(6):833–848CrossRefGoogle Scholar
  5. Barbosa CD, Lacerda IC, de Souza Oliveira E (2018) Potential evaluation of Saccharomyces cerevisiae strains from alcoholic fermentation of mango pulp. Afr J Biotechnol 17(28):880–884CrossRefGoogle Scholar
  6. Behera S, Kar S, Mohanty RC, Ray RC (2010) Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices. Appl Energy 87(1):96–100Google Scholar
  7. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101(13):4767–4774CrossRefGoogle Scholar
  8. Brandenburg J, Poppele I, Blomqvist J, Puke M, Pickova J, Sandgren M, Rapoport A, Vedernikovs N, Passoth V (2018) Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction. Appl Microbiol Biotechnol 102(14):6269–6277CrossRefGoogle Scholar
  9. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011Google Scholar
  10. Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Product Rep 28(12):1883–1896CrossRefGoogle Scholar
  11. Cao X, Sun S, Sun R (2017) Application of biochar-based catalysts in biomass upgrading: a review. RSC Adv 7(77):48793–48805CrossRefGoogle Scholar
  12. Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457CrossRefGoogle Scholar
  13. Chandel AK, Garlapati VK, Singh AK, Antunes FA, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, Solutions, and perspective on commercialization. Bioresour Technol 264:370–381CrossRefGoogle Scholar
  14. Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3(5):415–431Google Scholar
  15. Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35CrossRefGoogle Scholar
  16. Chovau S, Gaykawad S, Straathof AJ, Van der Bruggen B (2011) Influence of fermentation by-products on the purification of ethanol from water using pervaporation. Bioresour Technol 102(2):1669–1674CrossRefGoogle Scholar
  17. Conner AH (1984) Kinetic modeling of hardwood prehydrolysis. Part I. Xylan removal by water prehydrolysis. Wood Fiber Sci 16(2):268–277Google Scholar
  18. Demiray E, Karatay SE, Dönmez G (2018) Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Energy 159:988–994CrossRefGoogle Scholar
  19. Demirbas A (2008) Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers Manag 49(1):125–130CrossRefGoogle Scholar
  20. Doran PM (1995) Bioprocess engineering principles. ElsevierGoogle Scholar
  21. dos Santos Rocha MS, Pratto B, de Sousa Junior R, Almeida RM, da Cruz AJ (2017) A kinetic model for hydrothermal pretreatment of sugarcane straw. Bioresour Technol 228:176–185CrossRefGoogle Scholar
  22. Ferreira J, Santos VA, Cruz CH (2018) Ethanol production by co-culture of Zymomonas mobilis and Pachysolen tannophilus using banana peels hydrolysate as substrate. Acta Scientiarum Technol 40:e35169CrossRefGoogle Scholar
  23. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274CrossRefGoogle Scholar
  24. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends in Biotech 24(12):549–556CrossRefGoogle Scholar
  25. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Tech 100(1):10–18CrossRefGoogle Scholar
  26. Jansen ML, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJ, Klaassen P, Pronk JT (2017) Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 17(5):1–20CrossRefGoogle Scholar
  27. Jayed MH, Masjuki HH, Kalam MA, Mahlia TM, Husnawan M, Liaquat AM (2011) Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia. Renew Sustain Energy Rev 15(1):220–235CrossRefGoogle Scholar
  28. Ji M, Miao Y, Chen JY, You Y, Liu F, Xu L (2016) Growth characteristics of freeze-tolerant baker’s yeast Saccharomyces cerevisiae AFY in aerobic batch culture. SpringerPlus 5(1):503CrossRefGoogle Scholar
  29. Jin YS, Cate JH (2017) Metabolic engineering of yeast for lignocellulosic biofuel production. Curr Opin Chem Biol 41:99–106CrossRefGoogle Scholar
  30. Kashid M, Ghosalkar A (2018) Evaluation of fermentation kinetics of xylose to ethanol fermentation in the presence of acetic acid by Pichia stipitis: modeling and experimental data comparisonGoogle Scholar
  31. Ko JK, Lee SM (2018) Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production. Curr Opin Biotech 50:72–80CrossRefGoogle Scholar
  32. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  33. Larsen J, Poulsen NN, Jeppesen MD, Mogensen KK (2018) Methods of processing lignocellulosic biomass using single-stage autohydrolysis pretreatment and enzymatic hydrolysis. U.S. Patent 9,920,345, issued March 20, 2018Google Scholar
  34. Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14(5):288CrossRefGoogle Scholar
  35. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467CrossRefGoogle Scholar
  36. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642CrossRefGoogle Scholar
  37. Löbs AK, Schwartz C, Wheeldon I (2017) Genome and metabolic engineering in non-conventional yeasts: current advances and applications. Synth Syst Biotechnol 2(3):198–207CrossRefGoogle Scholar
  38. Mans R, Daran JMG, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56CrossRefGoogle Scholar
  39. Mansouri A, Rihani R, Laoufi AN, Özkan M (2016) Production of bioethanol from a mixture of agricultural feedstocks: Biofuels characterization. Fuel 185:612–621CrossRefGoogle Scholar
  40. Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5(5):597–609Google Scholar
  41. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93CrossRefGoogle Scholar
  42. Mussatto SI, Dragone G, Guimarães PM, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28(6):817–830CrossRefGoogle Scholar
  43. Mustofa A (2018) Bioethanol production from banana stem by using simultaneous saccharification and fermentation (SSF). In: IOP conference series: materials science and engineering, vol 358, no 1, p 012004. IOP PublishingGoogle Scholar
  44. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68CrossRefGoogle Scholar
  45. Nwuche CO, Murata Y, Nweze JE, Ndubuisi IA, Ohmae H, Saito M, Ogbonna JC (2018) Bioethanol production under multiple stress condition by a new acid and temperature tolerant Saccharomyces cerevisiae strain LC 269108 isolated from rotten fruits. Process Biochem 67:105–112CrossRefGoogle Scholar
  46. Patil V, Tran KQ, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9(7):1188–1195CrossRefGoogle Scholar
  47. Pronyk C, Mazza G (2010) Kinetic modeling of hemicellulose hydrolysis from triticale straw in a pressurized low polarity water flow-through reactor. Ind Eng Chem Res 49(14):6367–6375CrossRefGoogle Scholar
  48. Rao DG (2010) Introduction to biochemical engineering. Tata McGraw-Hill EducationGoogle Scholar
  49. Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sustain Energ Rev 80:330–340CrossRefGoogle Scholar
  50. Saeman JF (1945) Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37(1):43–52CrossRefGoogle Scholar
  51. Sewsynker-Sukai Y, Kana EG (2018) Simultaneous saccharification and bioethanol production from corn cobs: process optimization and kinetic studies. Bioresour Tech 262:32–41CrossRefGoogle Scholar
  52. Sharma D, Sud A, Bansal S, Mahajan R, Sharma BM, Chauhan RS, Goel G (2018) Endocellulase production by Cotylidia pannosa and its application in saccharification of wheat bran to bioethanol. BioEnergy Res 11(1):219–227CrossRefGoogle Scholar
  53. Shi J, Wu D, Zhang L, Simmons BA, Singh S, Yang B, Wyman CE (2017a) Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose. Biotechnol Bioeng 114(3):503–515CrossRefGoogle Scholar
  54. Shi S, Guan W, Kang L, Lee YY (2017b) Reaction kinetic model of dilute acid-catalyzed hemicellulose hydrolysis of corn stover under high-solid conditions. Ind Eng Chem Res 56(39):10990–10997CrossRefGoogle Scholar
  55. Shuler ML, Kargi F (2002). Bioprocess engineering: basic concepts, 2nd edn. Upper SaddleGoogle Scholar
  56. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Tech 199:76–82CrossRefGoogle Scholar
  57. Srimachai T, Nuithitikul K, Sompong O, Kongjan P, Panpong K (2015) Optimization and kinetic modeling of ethanol production from oil palm frond juice in batch fermentation. Energy Procedia 79:111–118CrossRefGoogle Scholar
  58. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Tech 83(1):1–11CrossRefGoogle Scholar
  59. Tabata T, Yoshiba Y, Takashina T, Hieda K, Shimizu N (2017) Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11. World J Microbiol Biotechnol 33(3):1–7CrossRefGoogle Scholar
  60. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651CrossRefGoogle Scholar
  61. Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753CrossRefGoogle Scholar
  62. Tian SQ, Zhao RY, Chen ZC (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energy Rev 91:483–489CrossRefGoogle Scholar
  63. Tri CL, Kamei I (2018) The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. Int Biodeterior Biodegrad 133:86–92CrossRefGoogle Scholar
  64. Veluchamy C, Kalamdhad AS, Gilroyed BH (2018) Advanced pretreatment strategies for bioenergy production from biomass and biowaste. In: Handbook of environmental materials management, pp 1–19Google Scholar
  65. Wang TY (2015) Engineering yeast for cellulosic ethanol production. Austin Chem Eng 2(2):1018Google Scholar
  66. Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, Contreras LM (2018) Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab EngGoogle Scholar
  67. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335(6066):308–313CrossRefGoogle Scholar
  68. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin: Innov Sustain Econ 2(1):26–40CrossRefGoogle Scholar
  69. Yang P, Zhang H, Cao L, Zheng Z, Mu D, Jiang S, Cheng J (2018) Combining sestc engineered A. niger with sestc engineered S. cerevisiae to produce rice straw ethanol via step-by-step and in situ saccharification and fermentation. 3 Biotech 8(1):12Google Scholar
  70. Yuan Z, Wen Y, Kapu NS (2018) Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresour Technol 247:242–249CrossRefGoogle Scholar
  71. Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501CrossRefGoogle Scholar
  72. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101(13):4992–5002CrossRefGoogle Scholar
  73. Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ajay Kumar
    • 1
    Email author
  • Joginder Singh
    • 1
  • Chinnappan Baskar
    • 2
    • 3
  1. 1.School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  2. 2.THDC Institute of Hydropower Engineering and TechnologyTehriIndia
  3. 3.Uttarakhand Technical UniversityDehradunIndia

Personalised recommendations