Ocular Toxicology in Military and Civilian Disaster Environments

  • Derek L. Eisnor
  • Brent W. Morgan


The eye is vulnerable to chemical exposure from both external contact and systemic (vascular) absorption. The vast majority of CW exposures occur through external contact and the potential for penetration into the eye. For this reason, all parts of the eye can be affected by chemicals, the limitations mainly subject to the pharmacokinetics of a particular agent.


Ocular toxicology Military disaster Civilian disaster 


  1. 1.
    Weapons of war “poison gas” 2009.
  2. 2.
    OPCW: Report on the implementation of the convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction. OPCW; 2013.
  3. 3.
    Puangsricharern V, Tseng SC. Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology. 1995;102(10):1476–85.PubMedCrossRefGoogle Scholar
  4. 4.
    Laibson PR, Oconor J. Explosive tear gas injuries of the eye. Trans Am Acad Ophthalmol Otolaryngol. 1970;74(4):811–9.PubMedGoogle Scholar
  5. 5.
    Adler. In: Adler, editor. Adler’s physiology of the eye. 9th ed. St. Louis: Mosby-Year Book; 1992.Google Scholar
  6. 6.
    Sears. In: Sears, editor. Pharmacology of the eye: Springer-Verlag; 1984.Google Scholar
  7. 7.
    Eves P, Smith-Thomas L, Hedley S, Wagner M, Balafa C, Mac NS. A comparative study of the effect of pigment on drug toxicity in human choroidal melanocytes and retinal pigment epithelial cells. Pigment Cell Res. 1999;12(1):22–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Potts. Toxic responses of the eye Casarett and Doull’s Toxicology: the basic science of poisons. 5th ed. New York: McGraw-Hill; 1996.Google Scholar
  9. 9.
    Goldsmith TH. Optimization, constraint, and history in the evolution of eyes. Q Rev Biol. 1990;65(3):281–322.PubMedCrossRefGoogle Scholar
  10. 10.
    King G, Hirst L, Holmes R. Human corneal and lens aldehyde dehydrogenases. Localization and function(s) of ocular ALDH1 and ALDH3 isozymes. Adv Exp Med Biol. 1999;463:189–98.PubMedCrossRefGoogle Scholar
  11. 11.
    Mader TH, Carroll RD, Slade CS, George RK, Ritchey JP, Neville SP. Ocular war injuries of the Iraqi Insurgency,January-September 2004. Ophthalmology. 2006;113(1):97–104.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    CDC/DHHS. Explosions and blast injuries, a primer for clinicians; 2008.Google Scholar
  13. 13.
    Arya SK, Malhotra S, Dhir SP, Sood S. Ocular fireworks injuries. Clinical features and visual outcome. Indian J Ophthalmol. 2001;49(3):189–90.PubMedGoogle Scholar
  14. 14.
    Sacu S, Segur-Eltz N, Stenng K, Zehetmayer M. Ocular firework injuries at New Year's eve. Ophthalmologica. 2002;216(1):55–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Jr HW. Mustard gas injuries to the eyes. Arch Ophthalmol. 1942;(27):582–601.Google Scholar
  16. 16.
    Leopold IH, Lieberman TW. Chemical injuries of the cornea. Fed Proc. 1971;30(1):92–5.PubMedGoogle Scholar
  17. 17.
    Hoffmann DH. Eye burns caused by tear gas. Br J Ophthalmol. 1967;51(4):265–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wang X, Zhang Y, Ni L, You C, Ye C, Jiang R, et al. A review of treatment strategies for hydrofluoric acid burns: current status and future prospects. Burns. 2014;40(8):1447–57.PubMedCrossRefGoogle Scholar
  19. 19.
    Trevino MA, Herrmann GH, Sprout WL. Treatment of severe hydrofluoric acid exposures. J Occup Med. 1983;25(12):861–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Dohlman CH, Cade F, Pfister R. Chemical burns to the eye: paradigm shifts in treatment. Cornea. 2011;30(6):613–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Clare G, Suleman H, Bunce C, Dua H. Amniotic membrane transplantation for acute ocular burns. Cochrane Database Syst Rev. 2012;9:Cd009379.Google Scholar
  22. 22.
    Fish R, Davidson RS. Management of ocular thermal and chemical injuries, including amniotic membrane therapy. Curr Opin Ophthalmol. 2010;21(4):317–21.PubMedGoogle Scholar
  23. 23.
    Cade F, Paschalis EI, Regatieri CV, Vavvas DG, Dana R, Dohlman CH. Alkali burn to the eye: protection using TNF-alpha inhibition. Cornea. 2014;33(4):382–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Gupta N, Kalaivani M, Tandon R. Comparison of prognostic value of Roper Hall and Dua classification systems in acute ocular burns. Br J Ophthalmol. 2011;95(2):194–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Dua HS, King AJ, Joseph A. A new classification of ocular surface burns. Br J Ophthalmol. 2001;85(11):1379–83.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Suh MH, Kwon JW, Wee WR, Han YK, Kim JH, Lee JH. Protective effect of ascorbic Acid against corneal damage by ultraviolet B irradiation: a pilot study. Cornea. 2008;27(8):916–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Bunker DJ, George RJ, Kleinschmidt A, Kumar RJ, Maitz P. Alkali-related ocular burns: a case series and review. J Burn Care Res. 2014;35(3):261–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Geffen N, Topaz M, Kredy-Farhan L, Barequet IS, Farzam N, Assia EI, et al. Phacoemulsification-induced injury in corneal endothelial cells mediated by apoptosis: in vitro model. J Cataract Refract Surg. 2008;34(12):2146–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Tewari-Singh N, Jain AK, Inturi S, Ammar DA, Agarwal C, Tyagi P, et al. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries. Toxicol Appl Pharmacol. 2012;264(1):23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Donshik PC, Berman MB, Dohlman CH, Gage J, Rose J. Effect of topical corticosteroids on ulceration in alkali-burned corneas. Arch Ophthalmol. 1978;96(11):2117–20.CrossRefGoogle Scholar
  31. 31.
    Edward Trudo WR. Chapter 7 - Chemical Injuries of the Eye. Ophthalmic Care of the Combat Casualty Borden Institute, Office of the Surgeon General; 2003.Google Scholar
  32. 32.
    Spielmann H, Kalweit S, Liebsch M, Wirnsberger T, Gerner I, Bertram-Neis E, et al. Validation study of alternatives to the Draize eye irritation test in Germany: cytotoxicity testing and HET-CAM test with 136 industrial chemicals. Toxicol In Vitro. 1993;7(4):505–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Moldenhauer F. Using in vitro prediction models instead of the rabbit eye irritation test to classify and label new chemicals: a post hoc data analysis of the international EC/HO validation study. Altern Lab Anim. 2003;31(1):31–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Doucet O, Lanvin M, Thillou C, Linossier C, Pupat C, Merlin B, et al. Reconstituted human corneal epithelium: a new alternative to the Draize eye test for the assessment of the eye irritation potential of chemicals and cosmetic products. Toxicol In Vitro. 2006;20(4):499–512.PubMedCrossRefGoogle Scholar
  35. 35.
    Ikarashi Y, Tsuchiya T, Nakamura A. Comparison of Three In Vitro Assays to Determine the Ocular Toxicity of Detergent, Oil, and Organic Solvents. Cutan Ocul Toxicol. 1993;12(1):15–24.CrossRefGoogle Scholar
  36. 36.
    Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995;59(2):201–22.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 2014;28(3):1317–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Lapalus P, Ettaiche M, Fredj-Reygrobellet D, Jambou D, Elena PP. Cytotoxicity studies in ophthalmology. Lens Eye Toxic Res. 1990;7(3–4):231–42.PubMedGoogle Scholar
  39. 39.
    DHHS/CDC/NIOSH. Guidance on Emergency Responder Personal Protective Equipment (PPE) for Response to CBRN Terrorism Incidents.: DHHS/CDC/NIOSH; 2008.Google Scholar
  40. 40.
    Taysse L, Daulon S, Delamanche S, Bellier B, Breton P. Skin decontamination of mustards and organophosphates: comparative efficiency of RSDL and Fuller's earth in domestic swine. Hum Exp Toxicol. 2007;26(2):135–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Trapp. The detoxification and natural degradation of chemical warfare agents: Stockholm International Peace Research Institute; 1985.Google Scholar
  42. 42.
    Braue EH Jr, Smith KH, Doxzon BF, Lumpkin HL, Clarkson ED. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 2: guinea pigs challenged with soman. Cutan Ocul Toxicol. 2011;30(1):29–37.PubMedCrossRefGoogle Scholar
  43. 43.
    Kompa S, Redbrake C, Hilgers C, Wustemeyer H, Schrage N, Remky A. Effect of different irrigating solutions on aqueous humour pH changes, intraocular pressure and histological findings after induced alkali burns. Acta Ophthalmol Scand. 2005;83(4):467–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Chau JP, Lee DT, Lo SH. A systematic review of methods of eye irrigation for adults and children with ocular chemical burns. Worldviews Evid Based Nurs. 2012;9(3):129–38.PubMedCrossRefGoogle Scholar
  45. 45.
    Hall AH, Blomet J, Mathieu L. Diphoterine for emergent eye/skin chemical splash decontamination: a review. Vet Hum Toxicol. 2002;44(4):228–31.PubMedGoogle Scholar
  46. 46.
    Schrage NF, Struck HG, Gerard M. Recommendations for acute treatment for chemical and thermal burns of eyes and lids. Ophthalmologe. 2011;108(10):916–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Goldich Y, Barkana Y, Zadok D, Avni I, Berenshtein E, Rosner M, et al. Use of amphoteric rinsing solution for treatment of ocular tissues exposed to nitrogen mustard. Acta Ophthalmol. 2013;91(1):e35–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Gerasimo PBJ, Mathieu L, Hall AH. Diphoterine decontamination of 14C-sulfur mustard contaminated human skin fragments in vitro. Toxicologist. 2000;(54):152.Google Scholar
  49. 49.
    Rihawi S, Frentz M, Reim M, Schrage NF. Rinsing with isotonic saline solution for eye burns should be avoided. Burns. 2008;34(7):1027–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Pless M, Friberg TR. Topical phenylephrine may result in worsening of visual loss when used to dilate pupils in patients with vaso-occlusive disease of the optic nerve. Semin Ophthalmol. 2003;18(4):218–21.PubMedCrossRefGoogle Scholar
  51. 51.
    He M, Huang W, Friedman DS, Wu C, Zheng Y, Foster PJ. Slit lamp-simulated oblique flashlight test in the detection of narrow angles in Chinese eyes: the Liwan eye study. Invest Ophthalmol Vis Sci. 2007;48(12):5459–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Levinson. In: Levinson, editor. Clinical methods: the history, physical, and laboratory examinations. 3rd ed: Reed Publishing; 1990.Google Scholar
  53. 53.
    Blice JP. Ocular injuries, triage, and management in maxillofacial trauma. Atlas Oral Maxillofac Surg Clin North Am. 2013;21(1):97–103.PubMedCrossRefGoogle Scholar
  54. 54.
    Norcia AM, Tyler CW, Allen D. Electrophysiological assessment of contrast sensitivity in human infants. Am J Optom Physiol Optic. 1986;63(1):12–5.CrossRefGoogle Scholar
  55. 55.
    Regan D. Electrical responses evoked from the human brain. Sci Am. 1979;241(6):134–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Marmor MF. An updated standard for clinical electroretinography. Arch Ophthalmol. 1995;113(11):1375–6.PubMedCrossRefGoogle Scholar
  57. 57.
    EPA. EPA: Health effect test guidelines. Neurophysiology: Sensory Evoked Potentials.: EPA; 1998.Google Scholar
  58. 58.
    Kollner. Die Störungen des Farbensinners. ihre klinische Bedeutung und ihre Diagnose. Karger; 1912.Google Scholar
  59. 59.
    Schwartz. Visual perception: a clinical orientation; 2004.Google Scholar
  60. 60.
    Department UW. U.S. War Department, General Orders No. 100, Adjutant General’s Office, Washington, April 24. The War of the Rebellion: A Compilation of the Official Records of the Union and Confederate Armies. Washington DC: U.S. Government Printing Office; 1863. p. 1880–901.Google Scholar
  61. 61.
    CDC/NIOSH. Sulfur Mustard, CAS #: 505–60-2; RTECS #: WQ0900000; UN #: 2810. CDC/NIOSH; 2011.Google Scholar
  62. 62.
    Army US. Potential Military Chemical/Biological Agents and Compounds. US Army Field Manual 3–9, US Navy Publication P-467, US Air Force Manual 355–71990. p. 20,32.Google Scholar
  63. 63.
    Vidan A, Luria S, Eisenkraft A, Hourvitz A. Ocular injuries following sulfur mustard exposure: clinical characteristics and treatment. Isr Med Assoc J. 2002;4(7):577–8.PubMedGoogle Scholar
  64. 64.
    Graham JSSB. Historical perspective on effects and treatment of sulfur mustard injuries. Chem Biol Interact. 2013;206(3):512–22.PubMedCrossRefGoogle Scholar
  65. 65.
    Grant W. In: Grant W, editor. Toxicology of the eye : effects on the eyes and visual system from chemicals, drugs, metals and minerals, plants, toxins and venoms. Springfield: Thomas; 1986.Google Scholar
  66. 66.
    Shulman LN. The biology of alkylating-agent cellular injury. Hematol Oncol Clin North Am. 1993;7(2):325–35.PubMedCrossRefGoogle Scholar
  67. 67.
    Papirmeister B, Feister AJ, Robinson I, Ford RD (1991). Medical Defense Against Mustard Gas: Toxic Mechanisms and Pharmacological Implications. Boca Raton: CRC Press; 1991.Google Scholar
  68. 68.
    Javadi MA, Yazdani S, Kanavi MR, Mohammadpour M, Baradaran-Rafiee A, Jafarinasab MR, et al. Long-term outcomes of penetrating keratoplasty in chronic and delayed mustard gas keratitis. Cornea. 2007;26(9):1074–8.PubMedCrossRefGoogle Scholar
  69. 69.
    McNutt P, Tuznik K, Nelson M, Adkins A, Lyman M, Glotfelty E, et al. Structural, morphological, and functional correlates of corneal endothelial toxicity following corneal exposure to sulfur mustard vapor. Invest Ophthalmol Vis Sci. 2013;54(10):6735–44.PubMedCrossRefGoogle Scholar
  70. 70.
    Kadar T, Dachir S, Cohen L, Sahar R, Fishbine E, Cohen M, et al. Ocular injuries following sulfur mustard exposure--pathological mechanism and potential therapy. Toxicology. 2009;263(1):59–69.PubMedCrossRefGoogle Scholar
  71. 71.
    Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55.PubMedCrossRefGoogle Scholar
  72. 72.
    Frank MH, Frank NY. Restoring the cornea from limbal stem cells. Regen Med. 2015;10(1):1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Gilman A. The initial clinical trial of nitrogen mustard. Am J Surg. 1963;105:574–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Atkins KB, Lodhi IJ, Hurley LL, Hinshaw DB. N-acetylcysteine and endothelial cell injury by sulfur mustard. J Appl Toxicol. 2000;20(Suppl 1):S125–8.PubMedGoogle Scholar
  75. 75.
    Shohrati M, Karimzadeh I, Saburi A, Khalili H, Ghanei M. The role of N-acetylcysteine in the management of acute and chronic pulmonary complications of sulfur mustard: a literature review. Inhal Toxicol. 2014;26(9):507–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Jugg B, Fairhall S, Smith A, Rutter S, Mann T, Perrott R, et al. N-acetyl-L-cysteine protects against inhaled sulfur mustard poisoning in the large swine. Clin Toxicol (Phila). 2013;51(4):216–24.CrossRefGoogle Scholar
  77. 77.
    Devereaux A, Amundson DE, Parrish JS, Lazarus AA. Vesicants and nerve agents in chemical warfare. Decontamination and treatment strategies for a changed world. Postgrad Med. 2002;112(4):90–6; quiz 4.PubMedCrossRefGoogle Scholar
  78. 78.
    Vijayaraghavan R, Kumar P, Joshi U, Raza SK, Lakshmana Rao PV, Malhotra RC, et al. Prophylactic efficacy of amifostine and its analogues against sulphur mustard toxicity. Toxicology. 2001;163(2–3):83–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Sidell FRUJ, Smith WJ. Part I: Medical aspects of chemical and biological warfare. In: Zajtchuk B, editor. Textbook of military medicine. Falls Church: Office of the Surgeon General, Dept of the Army; 1997. p. 197–228.Google Scholar
  80. 80.
    Gupta RC. Handbook of toxicology of chemical warfare agents: Academic Press; 2009.Google Scholar
  81. 81.
    Gates MWJ, Zapp JA. In: Committee NDR, editor. Arsenicals: chemical warfare agents and related chemical problems. Washington, D.C; 1946.Google Scholar
  82. 82.
    IOM. Institute of Medicine Committee on the Survey of the Health. Effects of mustard gas and lewisite. In: Pechura CM, Rall DP, editors. Veterans at Risk: the health effects of mustard gas and lewisite. Washington, DC: National Academies Press (US) Copyright 1993 by the National Academy of Sciences. All rights reserved; 1993.Google Scholar
  83. 83.
    Hughes WF Jr. Clinical uses of 2,3-dimercaptopropanol (BAL); the treatment of lewisite burns of the eye with BAL. J Clin Invest. 1946;25(4):541–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Aaseth J, Skaug MA, Cao Y, Andersen O. Chelation in metal intoxication-Principles and paradigms. J Trace Elem Med Biol. 2015;31:260–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Andersen O. Principles and recent developments in chelation treatment of metal intoxication. Chem Rev. 1999;99(9):2683–710.PubMedCrossRefGoogle Scholar
  86. 86.
    Evans RB. Chlorine: state of the art. Lung. 2005;183(3):151–67.PubMedCrossRefGoogle Scholar
  87. 87.
    Massa CB, Scott P, Abramova E, Gardner C, Laskin DL, Gow AJ. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction. Toxicol Appl Pharmacol. 2014;278(1):53–64.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bismuth C, Borron SW, Baud FJ, Barriot P. Chemical weapons: documented use and compounds on the horizon. Toxicol Lett. 2004;149(1–3):11–8.PubMedCrossRefGoogle Scholar
  89. 89.
    CDC/ATSDR. Medical Management Guidelines for Chlorine, CAS# 7782-50-5, UN# 1017. In: DHHS/CDC/ATSDR, editor.: CDC/ATSDR; 2014.Google Scholar
  90. 90.
    Wang J, Winskog C, Edston E, Walther SM. Inhaled and intravenous corticosteroids both attenuate chlorine gas-induced lung injury in pigs. Acta Anaesthesiol Scand. 2005;49(2):183–90.PubMedCrossRefGoogle Scholar
  91. 91.
    Gunnarsson M, Walther SM, Seidal T, Lennquist S. Effects of inhalation of corticosteroids immediately after experimental chlorine gas lung injury. J Trauma. 2000;48(1):101–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Vinsel PJ. Treatment of acute chlorine gas inhalation with nebulized sodium bicarbonate. J Emerg Med. 1990;8(3):327–9.PubMedCrossRefGoogle Scholar
  93. 93.
    CalEPA. Air Toxics Hot Spots Program Risk Assessment Guidelines: Part III. In: Assessment OoEHH, editor. Technical Support Document for the Determination of Noncancerous Chronic Reference Exposure Levels. SRP Draft. Berkeley: California Environmental Protection Agency; 1999.Google Scholar
  94. 94.
    Van Sickle D, Wenck MA, Belflower A, Drociuk D, Ferdinands J, Holguin F, et al. Acute health effects after exposure to chlorine gas released after a train derailment. Am J Emerg Med. 2009;27(1):1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Jones R, Wills B, Kang C. Chlorine gas: an evolving hazardous material threat and unconventional weapon. West J Emerg Med. 2010;11(2):151–6.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Luo S, Trubel H, Wang C, Pauluhn J. Phosgene- and chlorine-induced acute lung injury in rats: comparison of cardiopulmonary function and biomarkers in exhaled breath. Toxicology. 2014;326:109–18.PubMedCrossRefGoogle Scholar
  97. 97.
    CDC/DHHS. Phosgene: Emergency Preparedness and Response.: CDC/DHHS; 2013.Google Scholar
  98. 98.
    Jugg B, Jenner J, Rice P. The effect of perfluoroisobutene and phosgene on rat lavage fluid surfactant phospholipids. Hum Exp Toxicol. 1999;18(11):659–68.PubMedCrossRefGoogle Scholar
  99. 99.
    Li W, Liu F, Wang C, Truebel H, Pauluhn J. Novel insights into phosgene-induced acute lung injury in rats: role of dysregulated cardiopulmonary reflexes and nitric oxide in lung edema pathogenesis. Toxicol Sci. 2013;131(2):612–28.PubMedCrossRefGoogle Scholar
  100. 100.
    Pauluhn J, Hai CX. Attempts to counteract phosgene-induced acute lung injury by instant high-dose aerosol exposure to hexamethylenetetramine, cysteine or glutathione. Inhal Toxicol. 2011;23(1):58–64.PubMedCrossRefGoogle Scholar
  101. 101.
    Li W, Rosenbruch M, Pauluhn J. Effect of PEEP on phosgene-induced lung edema: pilot study on dogs using protective ventilation strategies. Exp Toxicol Pathol. 2015;67(2):109–16.PubMedCrossRefGoogle Scholar
  102. 102.
    Vaish AK, Consul S, Agrawal A, Chaudhary SC, Gutch M, Jain N, et al. Accidental phosgene gas exposure: A review with background study of 10 cases. J Emerg Trauma Shock. 2013;6(4):271–5.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Thomas C. In: Grant W, editor. Toxicology of the eye. 2nd ed; 1974.Google Scholar
  104. 104.
    Hygienists ACoGI, editor Documentation of the TLV's and BEI's with Other World Wide Occupational Exposure Values. American Conference of Governmental Industrial Hygienists 2006. Cincinnati, OH.Google Scholar
  105. 105.
    CDC/ATSDR. Medical Management Guidelines for Phosgene (COCl2), CAS# 75–44-5, UN# 1076. CDC/ATSDR; 2014.Google Scholar
  106. 106.
    Diller WF. Early diagnosis of phosgene overexposure. Toxicol Ind Health. 1985;1(2):73–80.PubMedCrossRefGoogle Scholar
  107. 107.
    Kundu P, Hwang KC. Rational design of fluorescent phosgene sensors. Anal Chem. 2012;84(10):4594–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Hulse EJ, Davies JO, Simpson AJ, Sciuto AM, Eddleston M. Respiratory complications of organophosphorus nerve agent and insecticide poisoning. Implications for respiratory and critical care. Am J Respir Crit Care Med. 2014;190(12):1342–54.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Quistad GB, Sparks SE, Casida JE. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides. Toxicol Appl Pharmacol. 2001;173(1):48–55.PubMedCrossRefGoogle Scholar
  110. 110.
    Okumura T, Hisaoka T, Naito T, Isonuma H, Okumura S, Miura K, et al. Acute and chronic effects of sarin exposure from the Tokyo subway incident. Environ Toxicol Pharmacol. 2005;19(3):447–50.PubMedCrossRefGoogle Scholar
  111. 111.
    Chandar NB, Ganguly B. A first principles investigation of aging processes in soman conjugated AChE. Chem Biol Interact. 2013;204(3):185–90.PubMedCrossRefGoogle Scholar
  112. 112.
    Foltin G, Tunik M, Curran J, Marshall L, Bove J, van Amerongen R, et al. Pediatric nerve agent poisoning: medical and operational considerations for emergency medical services in a large American city. Pediatr Emerg Care. 2006;22(4):239–44.PubMedCrossRefGoogle Scholar
  113. 113.
    AAP. Chemical-biological terrorism and its impact on children: a subject review. American Academy of Pediatrics. Committee on Environmental Health and Committee on Infectious Diseases. Pediatrics. 2000;105(3 Pt 1):662–70.Google Scholar
  114. 114.
    Chung S, Shannon M. Hospital planning for acts of terrorism and other public health emergencies involving children. Arch Dis Child. 2005;90(12):1300–7.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Eddleston M, Roberts D, Buckley N. Management of severe organophosphorus pesticide poisoning. Crit Care. 2002;6(3):259.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sternbach LHaSK. Antispasmodics: (1)Bicyclic basic alcohols, (2)Esters of basic bicyclic alcohols. J Am Chem Soc. 1952;74.Google Scholar
  117. 117.
    Corps USAC. Joint CB Technical Data Source Book: Volume II Riot Control and Incapacitating Agents, Part Three: Agent BZ. Fort Douglas, Utah; 1972.Google Scholar
  118. 118.
    Rosenblatt D, Dacre J, Shiotsuka R, Rowlett C. Problem definition studies on the potential environmental pollutants VIII. Chemistry and toxicology of BZ (3-Quinuclidinyl Benzinlate), TR 7710. In: Army U, editor. Fort Detrick: US Army Medical Bioengineering Research and Development Laboratory; 1977.Google Scholar
  119. 119.
    US Army BI. Chapter 5: incapacitating agents. In: Medical management of chemical casualties handbook: US Army, Borden Institute.Google Scholar
  120. 120.
    Ballantyne B, Swanston DW. The comparative acute mammalian toxicity of 1-chloroacetophenone (CN) and 2-chlorobenzylidene malononitrile (CS). Arch Toxicol. 1978;40(2):75–95.PubMedCrossRefGoogle Scholar
  121. 121.
    Chapman AJ, White C. Death resulting from lacrimatory agents. J Forensic Sci. 1978;23(3):527–30.PubMedCrossRefGoogle Scholar
  122. 122.
    Rothberg S. Skin sensitization potential of the riot control agents BBC, DM, CN and CS in guinea pigs. Mil Med. 1970;135(7):552–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Ballantyne B, Callaway S. Inhalation toxicology and pathology of animals exposed to o-chlorobenzylidene malononitrile (CS). Med Sci Law. 1972;12(1):43–65.PubMedCrossRefGoogle Scholar
  124. 124.
    Gaskins JR, Hehir RM, McCaulley DF, Ligon EW Jr. Lacrimating agents (CS and CN) in rats and rabbits. Acute effects on mouth, eyes, and skin. Arch Environ Health. 1972;24(6):449–54.PubMedCrossRefGoogle Scholar
  125. 125.
    Rengstorff RH, Mershon MM. CS in trioctyl phosphate: effects on human eyes. Mil Med. 1971;136(2):152–3.PubMedCrossRefGoogle Scholar
  126. 126.
    Ballantyne B, Gazzard MF, Swanston DW, Williams P. The ophthalmic toxicology of o-chlorobenzylidene malononitrile (CS). Arch Toxicol. 1974;32(3):149–68.PubMedCrossRefGoogle Scholar
  127. 127.
    Beswick FW, Holland P, Kemp KH. Acute effects of exposure to orthochlorobenzylidene malononitrile (CS) and the development of tolerance. Br J Ind Med. 1972;29(3):298–306.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Kluchinsky TA Jr, Sheely MV, Savage PB, Smith PA. Formation of 2-chlorobenzylidenemalononitrile (CS riot control agent) thermal degradation products at elevated temperatures. J Chromatogr A. 2002;952(1–2):205–13.PubMedCrossRefGoogle Scholar
  129. 129.
    Kluchinsky TA Jr, Savage PB, Fitz R, Smith PA. Liberation of hydrogen cyanide and hydrogen chloride during high-temperature dispersion of CS riot control agent. AIHA J (Fairfax, Va). 2002;63(4):493–6.CrossRefGoogle Scholar
  130. 130.
    EPA. The Environmental Protection Agency’s (EPA) List of Registered Bear Deterrents containing capsaicin (regulated under FIFRA). EPA; 1996.Google Scholar
  131. 131.
    Peter KV. In: Peter KV, editor. Handbook of herbs and spices: Woodhead Publishing; 2012.Google Scholar
  132. 132.
    Tainter D, Grenis A, Norwat R. Spices and seasonings (A Food Technology Handbook). Second edition. Food Serv Technol. 2001;1:181. Scholar
  133. 133.
    Reilly CA, Crouch DJ, Yost GS. Quantitative analysis of capsaicinoids in fresh peppers, oleoresin capsicum and pepper spray products. J Forensic Sci. 2001;46(3):502–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Weiser T, Roufogalis B, Chrubasik S. Comparison of the effects of pelargonic acid vanillylamide and capsaicin on human vanilloid receptors. Phytother Res. 2013;27(7):1048–53.PubMedCrossRefGoogle Scholar
  135. 135.
    Kozukue N, Han JS, Kozukue E, Lee SJ, Kim JA, Lee KR, et al. Analysis of eight capsaicinoids in peppers and pepper-containing foods by high-performance liquid chromatography and liquid chromatography-mass spectrometry. J Agric Food Chem. 2005;53(23):9172–81.PubMedCrossRefGoogle Scholar
  136. 136.
    Steffee CH, Lantz PE, Flannagan LM, Thompson RL, Jason DR. Oleoresin capsicum (pepper) spray and “in-custody deaths”. Am J Forensic Med Pathol. 1995;16(3):185–92.PubMedCrossRefGoogle Scholar
  137. 137.
    Gosselin RE, Hodge HC, Smith RP, Gleason MN. Clinical toxicology of commercial products. 4th ed. Baltimore: Williams and Wilkins; 1976.Google Scholar
  138. 138.
    Monsereenusorn Y. Subchronic toxicity studies of capsaicin and capsicum in rats. Res Commun Chem Pathol Pharmacol. 1983;41(1):95–110.PubMedGoogle Scholar
  139. 139.
    toxicology Ijo. Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin. Int J Toxicol. 2007;26(Suppl 1):3–106.Google Scholar
  140. 140.
    Hazari MS, Rowan WH, Winsett DW, Ledbetter AD, Haykal-Coates N, Watkinson WP, et al. Potentiation of pulmonary reflex response to capsaicin 24h following whole-body acrolein exposure is mediated by TRPV1. Respir Physiol Neurobiol. 2008;160(2):160–71.PubMedCrossRefGoogle Scholar
  141. 141.
    E T-H. Cough reduction using capsaicin. Respir Med. 2015;109(1):27–37.CrossRefGoogle Scholar
  142. 142.
    Tuorinsky SD. Medical aspects of chemical warfare.: Office of the Surgeon General, Department of the Army. Washington, D.C: Borden Institute (U.S.) Government Printing Office; 2008.Google Scholar
  143. 143.
    Voegeli S, Baenninger PB. Severe chemical burn to the eye after pepper spray attack. Klin Monbl Augenheilkd. 2014;231(4):327–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Fujita S, Shimizu T, Izumi K, Fukuda T, Sameshima M, Ohba N. Capsaicin-induced neuroparalytic keratitis-like corneal changes in the mouse. Exp Eye Res. 1984;38(2):165–75.PubMedCrossRefGoogle Scholar
  145. 145.
    Gerber S, Frueh BE, Tappeiner C. Conjunctival proliferation after a mild pepper spray injury in a young child. Cornea. 2011;30(9):1042–4.PubMedCrossRefGoogle Scholar
  146. 146.
    Olajos EJ, Salem H. Riot control agents: pharmacology, toxicology, biochemistry and chemistry. J Appl Toxicol. 2001;21(5):355–91.PubMedCrossRefGoogle Scholar
  147. 147.
    Ballantyne B, Beswick FW, Thomas DP. The presentation and management of individuals contaminated with solutions of dibenzoxazepine (CR). Med Sci Law. 1973;13(4):265–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Ballantyne B, Swanston DW. The irritant effects of dilute solutions of dibenzoxazepine (CR) on the eye and tongue. Acta Pharmacol Toxicol. 1974;35(5):412–23.CrossRefGoogle Scholar
  149. 149.
    Ashton I, Cotes JE, Holland P, Johnson GR, Legg SJ, Saunders MJ, et al. Acute effect of dibenz b.f.--1:4 oxazepine aerosol upon the lung function of healthy young men [proceedings]. J Physiol. 1978;275:85.CrossRefGoogle Scholar
  150. 150.
    Colgrave HF, Brown RF, Cox RA. Ultrastructure of rat lungs following exposure to aerosols of dibenzoxazepine (CR). Br J Exp Pathol. 1979;60(2):130–41.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Ballantyne B, Gazzard MF, Swanston DW, Williams P. The comparative ophthalmic toxicology of 1-chloroacetophenone (CN) and dibenz(b.f)-1:4-oxazepine(CR). Arch Toxicol. 1975;34(3):183–201.PubMedCrossRefGoogle Scholar
  152. 152.
    Stenhouse J, editor. On the economical applications of Charcoal to sanitary purposes, notices of the proceedings at the meetings of the Members of the Royal Institution of Great Britain; 1855.Google Scholar
  153. 153.
    EPA. RED Fact Sheet: Chloropicrin. US EPA: EPA; 2008.Google Scholar
  154. 154.
    CDC/NIOSH. CHLOROPICRIN (PS) : Lung Damaging Agent; CAS #: 76–06-2; RTECS #: PB6300000; UN #: 1580. CDC/NIOSH; 2014.Google Scholar
  155. 155.
    Sparks SE, Quistad GB, Casida JE. Chloropicrin: reactions with biological thiols and metabolism in mice. Chem Res Toxicol. 1997;10(9):1001–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Pesonen M, Hakkinen M, Rilla K, Juvonen R, Kuitunen T, Pasanen M, et al. Chloropicrin-induced toxic responses in human lung epithelial cells. Toxicol Lett. 2014;226(2):236–44.PubMedCrossRefGoogle Scholar
  157. 157.
    Pesonen M, Pasanen M, Loikkanen J, Naukkarinen A, Hemmila M, Seulanto H, et al. Chloropicrin induces endoplasmic reticulum stress in human retinal pigment epithelial cells. Toxicol Lett. 2012;211(3):239–45.PubMedCrossRefGoogle Scholar
  158. 158.
    OEHHA C. Acute RELs and toxicity summaries using the previous version of the Hot Spots Risk Assessment Guidelines: CA OEHHA; 1999.Google Scholar
  159. 159.
    DHHS/NIOSH. NIOSH Pocket Guide to Chemical Hazards, National Institute for Occupational Safety and Health (NIOSH) Education and Information Division: DHHS/NIOSH; 2015.Google Scholar
  160. 160.
    CDC. Brief report: exposure to tear gas from a theft-deterrent device on a safe--Wisconsin, December 2003. MMWR Morb Mortal Wkly Rep. 2004;53(8):176–7.Google Scholar
  161. 161.
    Zasshi ONeaNNI. Case Report: Chloropicrin Eye Exposure. Japan Assoc Rural Med, Toxnet. 1980;29(3).Google Scholar
  162. 162.
    Prentiss A. Chemicals in war; a treatise on chemical warfare. New York/London: McGraw-Hill Book Company; 1937.Google Scholar
  163. 163.
    Hersh SM. Chemical and biological warfare: America's hidden arsenal: Doubleday; 1969.Google Scholar
  164. 164.
    McNamara BPOE, Weimer JT, Ballard TA. Toxicology of riot control chemicals - CS, CN and DM, EDGEWOOD ARSENAL ABERDEEN PROVING GROUND; Apr 1965-Jul 1968. 1968.Google Scholar
  165. 165.
    Owens M. Toxicology of DM, DEPARTMENT OF THE ARMY EDGEWOOD ARSENAL, Oct 1967. Maryland: Edgewood Arsenal; 1967.Google Scholar
  166. 166.
    Ltd O. Aviezer 121/1 99860 Israel.
  167. 167.
  168. 168.
    Wennig R, Schneider S, Meys F. GC/MS based identification of skunk spray maliciously deployed as “biological weapon” to harm civilians. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(17–18):1433–6.PubMedCrossRefGoogle Scholar
  169. 169.
    CDC/NIOSH. NIOSH Guide to Chemical Hazards: N-butyl Mercaptan.: CDC/NIOSH; 2015.Google Scholar
  170. 170.
    Fierro BR, Agnew DW, Duncan AE, Lehner AF, Scott MA. Skunk musk causes methemoglobin and Heinz body formation in vitro. Vet Clin Pathol. 2013;42(3):291–300.PubMedCrossRefGoogle Scholar
  171. 171.
    Zaks KL, Tan EO, Thrall MA. Heinz body anemia in a dog that had been sprayed with skunk musk. J Am Vet Med Assoc. 2005;226(9):1516–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Starr C. Biology: concepts and applications. Belmont: Thomson Brooks/Cole; 2006.Google Scholar
  173. 173.
    Doutch JJ, Quantock AJ, Joyce NC, Meek KM. Ultraviolet light transmission through the human corneal stroma is reduced in the periphery. Biophys J. 2012;102(6):1258–64.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Barkana Y, Belkin M. Laser eye injuries. Surv Ophthalmol. 2000;44(6):459–78.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Marshall J. The safety of laser pointers: myths and realities. Br J Ophthalmol. 1998;82(11):1335–8.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Lamotte J, Fife J, Lee A, Hemenger R. The power output of laser pointers: do they exceed federal standards? Optom Vis Sci. 2001;78(7):525–8.PubMedCrossRefGoogle Scholar
  177. 177.
    Boosten K, Van Ginderdeuren R, Spileers W, Stalmans I, Wirix M, Van Calster J, et al. Laser-induced retinal injury following a recreational laser show: two case reports and a clinicopathological study. Bull Soc Belge Ophtalmol. 2011;317:11–6.Google Scholar
  178. 178.
    Albert DM. In: Albert DM, editor. Principles and practice of ophthalmology. 3rd ed: Saunders; 2008.Google Scholar
  179. 179.
    Giani A, Thanos A, Roh MI, Connolly E, Trichonas G, Kim I, et al. In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(6):3880–7.PubMedCrossRefGoogle Scholar
  180. 180.
    Owens SL, Bunce C, Brannon AJ, Wormald R, Bird AC. Prophylactic laser treatment appears to promote choroidal neovascularisation in high-risk ARM: results of an interim analysis. Eye (Lond). 2003;17(5):623–7.CrossRefGoogle Scholar
  181. 181.
    Montezuma SR, Vavvas D, Miller JW. Review of the ocular angiogenesis animal models. Semin Ophthalmol. 2009;24(2):52–61.PubMedCrossRefGoogle Scholar
  182. 182.
    Nakajima T, Hirata M, Shearer TR, Azuma M. Mechanism for laser-induced neovascularization in rat choroid: accumulation of integrin alpha chain-positive cells and their ligands. Mol Vis. 2014;20:864–71.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Reichstein D. Current treatments and preventive strategies for radiation retinopathy. Curr Opin Ophthalmol. 2015;26(3):157–66.PubMedCrossRefGoogle Scholar
  184. 184.
    Aslam SA, Davies WI, Singh MS, Charbel Issa P, Barnard AR, Scott RA, et al. Cone photoreceptor neuroprotection conferred by CNTF in a novel in vivo model of battlefield retinal laser injury. Invest Ophthalmol Vis Sci. 2013;54(8):5456–65.PubMedCrossRefGoogle Scholar
  185. 185.
    Lou MF. Redox regulation in the lens. Prog Retin Eye Res. 2003;22(5):657–82.PubMedCrossRefGoogle Scholar
  186. 186.
    Raghavachari N, Qiao F, Lou MF. Does glutathione-S-transferase dethiolate lens protein-thiol mixed disulfides?-A comparative study with thioltransferase. Exp Eye Res. 1999;68(6):715–24.PubMedCrossRefGoogle Scholar
  187. 187.
    Wang L, Zhao WC, Yin XL, Ge JY, Bu ZG, Ge HY, et al. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone. Mol BioSyst. 2012;8(3):888–901.PubMedCrossRefGoogle Scholar
  188. 188.
    Dayhaw-Barker P. Retinal pigment epithelium melanin and ocular toxicity. Int J Toxicol. 2002;21(6):451–4.PubMedCrossRefGoogle Scholar
  189. 189.
    Metry KJ, Neale JR, Doll MA, Howarth AL, States JC, McGregor WG, et al. Effect of rapid human N-acetyltransferase 2 haplotype on DNA damage and mutagenesis induced by 2-amino-3-methylimidazo-[4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx). Mutat Res. 2010;684(1–2):66–73.PubMedCrossRefGoogle Scholar
  190. 190.
    Brown DV. Reaction of the rabbit retinal pigment ipithelium to systemic lead poisoning. Trans Am Ophthalmol Soc. 1974;72:404–47.PubMedPubMedCentralGoogle Scholar
  191. 191.
    You Y, Gupta VK, Li JC, Klistorner A, Graham SL. Optic neuropathies: characteristic features and mechanisms of retinal ganglion cell loss. Rev Neurosci. 2013;24(3):301–21.PubMedCrossRefGoogle Scholar
  192. 192.
    Ruther K, Foerster J, Berndt S, Schroeter J. Chloroquine/hydroxychloroquine: variability of retinotoxic cumulative doses. Ophthalmologe. 2007;104(10):875–9.PubMedCrossRefGoogle Scholar
  193. 193.
    Yang P, Baciu P, Kerrigan BC, Etheridge M, Sung E, Toimil BA, et al. Retinal pigment epithelial cell death by the alternative complement cascade: role of membrane regulatory proteins, calcium, PKC, and oxidative stress. Invest Ophthalmol Vis Sci. 2014;55(5):3012–21.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Bahiga LM, Kotb NA, El-Dessoukey EA. Neurological syndromes produced by some toxic metals encountered industrially or environmentally. Z Ernahrungswiss. 1978;17(2):84–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Apel W, Stark D, Stark A, O'Hagan S, Ling J. Cobalt-chromium toxic retinopathy case study. Doc Ophthalmol. 2013;126(1):69–78.PubMedCrossRefGoogle Scholar
  196. 196.
    Sanaei-Zadeh H, Zamani N, Shadnia S. Outcomes of visual disturbances after methanol poisoning. Clin Toxicol (Phila). 2011;49(2):102–7.CrossRefGoogle Scholar
  197. 197.
    Carelli V, Ross-Cisneros FN, Sadun AA. Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem Int. 2002;40(6):573–84.PubMedCrossRefGoogle Scholar
  198. 198.
    Shah S, Pandey V, Thakore N, Mehta I. Study of 63 cases of methyl alcohol poisoning (hooch tragedy in Ahmedabad). J Assoc Physicians India. 2012;60:34–6.PubMedGoogle Scholar
  199. 199.
    Mergler D, Blain L. Assessing color vision loss among solvent-exposed workers. Am J Ind Med. 1987;12(2):195–203.PubMedCrossRefGoogle Scholar
  200. 200.
    Cavalleri A, Gobba F, Nicali E, Fiocchi V. Dose-related color vision impairment in toluene-exposed workers. Arch Environ Health. 2000;55(6):399–404.PubMedCrossRefGoogle Scholar
  201. 201.
    Roper-Hall MJ. Thermal and chemical burns. Trans Ophthalmol Soc U K. 1965;85:631–53.PubMedGoogle Scholar
  202. 202.
    Ivarsson U, Nilsson H, Santesson J, editors. A FOA briefing book on chemical weapons: threat, effects, and protection. Umeå: National Defence Research Establishment; 1992.Google Scholar
  203. 203.
    Kayama M, Kurokawa MS, Ueno H, Suzuki N. Recent advances in corneal regeneration and possible application of embryonic stem cell-derived corneal epithelial cells. Clin Ophthalmol. 2007;1(4):373–82.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Derek L. Eisnor
    • 1
  • Brent W. Morgan
    • 2
  1. 1.Grady Memorial Hospital, Emory University, Department of ToxicologyAtlantaUSA
  2. 2.Grady Memorial Hospital, Emory University, Department of Emergency MedicineAtlantaUSA

Personalised recommendations