Hypothalamic Amenorrhea

  • Sarah L. BergaEmail author
Part of the ISGE Series book series (ISGE)


Functional hypothalamic amenorrhea (FHA) is a reversible form of anovulation due to behavioral and psychological factors that provoke hypothalamic hypercortisolism and a cascade of neuroendocrine adaptations that conserve energy and also divert it away from reproduction with the goal of fostering survival and adaptation in response to actual and perceived challenges. Behavioral interventions such as cognitive behavior therapy (CBT) are designed to address problematic attitudes and behaviors so as to reduce hypothalamic hypercortisolism and restore ovulation and fertility. Because FHA is more than an isolated disruption of GnRH drive, hormone use alone does not reverse the neuroendocrine concomitants of FHA. However, because FHA is reversible, contraception should be provided if needed. Infertility treatment should be undertaken with caution as the associated neuroendocrine constellation of hypothalamic hypothyroidism and hypercortisolism may compromise maternal and fetal health. The role of psychotropics has not been appropriately studied. If sustained, the chronic stress and hypoestrogenism of FHA could have long-term deleterious health consequences including osteoporosis, syndromal psychiatric conditions, and cardiovascular disease.


Allostasis Amenorrhea Anovulation Cognitive behavior therapy (CBT) GnRH Hypothalamic hypercortisolism Hypothalamic hypogonadism Hypothalamic hypothyroidism Neuroendocrine adaptations Psychoneuroendocrinology 


  1. 1.
    Berga SL, Mortola JF, Girton L, Suh B, Laughlin G, Pham P, Yen SS. Neuroendocrine aberrations in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 1989;68(2):301–8. PubMed PMID: 2493024CrossRefGoogle Scholar
  2. 2.
    Berga SL, Daniels TL, Giles DE. Women with functional hypothalamic amenorrhea but not other forms of anovulation display amplified cortisol concentrations. Fertil Steril. 1997;67(6):1024–30. PubMed PMID: 9176439CrossRefGoogle Scholar
  3. 3.
    Michopoulos V, Mancini F, Loucks TL, Berga SL. Neuroendocrine recovery initiated by cognitive behavioral therapy in women with functional hypothalamic amenorrhea: a randomized, controlled trial. Fertil Steril. 2013b;99(7):2084. PubMed PMID: 23507474; PubMed Central PMCID: PMC3672390CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Caronia LM, Martin C, Welt CK, Sykiotis GP, Quinton R, Thambundit A, Avbelj M, Dhruvakumar S, Plummer L, Hughes VA, Seminara SB, Boepple PA, Sidis Y, Crowley WF Jr, Martin KA, Hall JE, Pitteloud N. A genetic basis for functional hypothalamic amenorrhea. N Engl J Med. 2011;364(3):215–25. Scholar
  5. 5.
    Gordon CM, Ackerman KE, Berga SL, Kaplan JR, Mastorakos G, Misra M, Murad MH, Santoro NF, Warren MP. Functional hypothalamic amenorrhea: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2017;102(5):1413–39. PubMed PMID: 28368518CrossRefPubMedGoogle Scholar
  6. 6.
    Lowry DW, Lowry DLB, Berga SL, Adelson PD, Roberts MM. Secondary amenorrhea due to hydrocephalus treated with endoscopic ventriculocisternostomy. Case report. J Neurosurg. 1996;85:1148–52.CrossRefGoogle Scholar
  7. 7.
    Daniell HW. Opioid endocrinopathy in women consuming prescribed sustained-action opioids for control of nonmalignant pain. J Pain. 2008;9(1):28–36.CrossRefGoogle Scholar
  8. 8.
    Ajmal A, Joffe H, Nachtigall LB. Psychotropic-induced hyperprolactinemia: a clinical review. Psychosomatics. 2014;55:29–36.CrossRefGoogle Scholar
  9. 9.
    Rettori V, De Laurentiis A, Fernandez-Solari J. Alcohol and endocannabinoids: neuroendocrine interactions in the reproductive axis. Exp Neurol. 2010;224(1):15–22.CrossRefGoogle Scholar
  10. 10.
    Li XF, Knox AMI, O’Byrne KT. Corticotropin-releasing factor and stress-induced inhibition of the gonadotrophin-releasing hormone pulse generator in the female. Brain Res. 2010;1364:153–63.CrossRefGoogle Scholar
  11. 11.
    Michopoulos V, Embree M, Reding K, Sanchez MM, Toufexis D, Votaw JR, Voll RJ, Goodman MM, Rivier J, Wilson ME, Berga SL. CRH receptor antagonism reverse the effect of social subordination upon central GABA-A receptor binding in estradiol-treated ovariectomized female rhesus monkeys. Neuroscience. 2013a;250:300–8.CrossRefGoogle Scholar
  12. 12.
    Brundu B, Loucks TL, Adler LJ, Cameron JL, Berga SL. Increased cortisol in the cerebrospinal fluid of women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 2006;91(4):1561–5. PubMed PMID: 16464944CrossRefGoogle Scholar
  13. 13.
    Whirledge S, Xu X, Cidlowski JA. Global gene expression analysis in human uterine epithelial cells defines new targets of glucocorticoids and estradiol antagonism. Biol Reprod. 2013;89(66):1–17.Google Scholar
  14. 14.
    Berga SL. Behaviorally induced reproductive compromise in women and men. Semin Reprod Endocrinol. 1997;15(1):47–53. PubMed PMID: 9065977CrossRefGoogle Scholar
  15. 15.
    Berga SL, Girton LG. The psychoneuroendocrinology of functional hypothalamic amenorrhea. Psychiatr Clin North Am. 1989;12(1):105–16. Review. PubMed PMID: 2565569CrossRefGoogle Scholar
  16. 16.
    Giles DE, Berga SL. Cognitive and psychiatric correlates of functional hypothalamic amenorrhea: a controlled comparison. Fertil Steril. 1993;60(3):486–92. PubMed PMID: 8375531CrossRefGoogle Scholar
  17. 17.
    Marcus MD, Loucks TL, Berga SL. Psychological correlates of functional hypothalamic amenorrhea. Fertil Steril. 2001;76(2):310–6. PubMed PMID: 11476778CrossRefGoogle Scholar
  18. 18.
    Berga SL. Stress and reproduction: a tale of false dichotomy? Endocrinology. 2008;149(3):867–8. PubMed PMID: 18292197CrossRefPubMedGoogle Scholar
  19. 19.
    Sanders KM, Kawwass JF, Loucks T, Berga SL. Heightened cortisol response to exercise challenge in women with functional hypothalamic amenorrhea. Am J Obstet Gynecol. 2017;218(2):230.e1–6. pii: S0002-9378(17)32346-3. PubMed PMID: 29170001. Scholar
  20. 20.
    Williams NI, Berga SL, Cameron JL. Synergism between psychosocial and metabolic stressors: impact on reproductive function in cynomolgus monkeys. Am J Physiol Endocrinol Metab. 2007;293(1):E270–6. PubMed PMID: 17405827CrossRefGoogle Scholar
  21. 21.
    Berga SL, Marcus MD, Loucks TL, Hlastala S, Ringham R, Krohn MA. Recovery of ovarian activity in women with functional hypothalamic amenorrhea who were treated with cognitive behavior therapy. Fertil Steril. 2003;80(4):976–81. PubMed PMID: 14556820CrossRefGoogle Scholar
  22. 22.
    Berga SL, Loucks TL. Use of cognitive behavior therapy for functional hypothalamic amenorrhea. Ann N Y Acad Sci. 2006;1092:114–29. Review. PubMed PMID: 17308138CrossRefGoogle Scholar
  23. 23.
    Bairey Merz CN, Johnson BD, Sharaf BL, Bittner V, Berga SL, Braunstein GD, Hodgson TK, Matthews KA, Pepine CJ, Resis SE, Reichek N, Rogers WJ, Pohost GM, Kelsey SF, Sopko G. Wise study group. Hypoestrogenemia of hypothalamic origin and coronary heart disease in premenopausal women: a report from the NHBLI-sponsored WISE study. J Am Coll Cardiol. 2003;41:413–9.CrossRefGoogle Scholar
  24. 24.
    Whirledge S, Cidlowski JA. Glucocorticoids and reproduction: traffic control on the road to reproduction. Trends Endocrinol Metab. 2017;28:399–415.CrossRefGoogle Scholar
  25. 25.
    Martin KA, Hall JE, Adams JM, Crowley WF Jr. Comparison of exogenous gonadotropins and pulsatile gonadotropin-releasing hormone for induction of ovulation in hypogonadotropic amenorrhea. J Clin Endocrinol Metab. 1993;77(1):125–9.PubMedGoogle Scholar
  26. 26.
    ESHRE Capri Workshop Group. Nutrition and reproduction in women. Hum Reprod Update. 2006;12(3):193–207.CrossRefGoogle Scholar
  27. 27.
    Koubaa S, Hallstrom T, Lindholm C, Hirschberg AL. Pregnancy and neonatal outcomes in women with eating disorders. Obstet Gynecol. 2005;105:255–60.CrossRefGoogle Scholar
  28. 28.
    Moutquin JM. Socioeconomic and psychosocial factors in the management and prevention of preterm labour. BJOG. 2003;110(Suppl 20):56–60.CrossRefGoogle Scholar
  29. 29.
    Muller AF, Verhoeff A, Mantel MJ, De Jong FH, Berghout A. Decrease of free thyroxine levels after controlled ovarian hyperstimulation. J Clin Endocrinol Metab. 2000;85(2):545–8.CrossRefGoogle Scholar
  30. 30.
    Alexander EK, Marqusee E, Lawrence J, Jarolim P, Fischer GA, Larsen PR. Timing and magnitude of increases in levothyroxine requirements during pregnancy in women with hypothyroidism. N Engl J Med. 2004;351(3):241–9.CrossRefGoogle Scholar
  31. 31.
    Ausó E, Lavado-Autric R, Cuevas E, Del Rey FE, Morreale De Escobar G, Berbel P. A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology. 2004;145(9):4037–47.CrossRefGoogle Scholar
  32. 32.
    Lavado-Autric R, Ausó E, García-Velasco JV, Arufe Mdel C, Escobar del Rey F, Berbel P, Morreale de Escobar G. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest. 2003;111(7):1073–82.CrossRefGoogle Scholar
  33. 33.
    Glinoer D. The regulation of thyroid function in pregnancy: pathways of endocrine adaptation from physiology to pathology. Endocr Rev. 1997;18(3):404–33.CrossRefGoogle Scholar
  34. 34.
    Menon R, Yu J, Basanta-Henry P, Brou L, Berga SL, Fortunato SJ, Taylor RN. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS One. 2012;7(2):e31136. PubMed PMID: 22348044; PubMed Central PMCID: PMC3278428CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Gynecological Endocrinology 2019

Authors and Affiliations

  1. 1.Division of Reproductive Endocrinology and InfertilityUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations