Advertisement

Regulation of Proliferation and Invasion in Endometriosis

  • N. RohloffEmail author
  • M. Götte
  • L. Kiesel
Chapter
Part of the ISGE Series book series (ISGE)

Abstract

Endometriosis is a common disease in young women, which affects approximately 6–10% of the female German population. It is defined as endometrium-like glands and stroma cells outside the uterus and can cause severe and chronic pain (dysmenorrhea, dyspareunia, abdominal pain) as well as reproductive problems and infertility [1, 2]. Endometriosis triggers a decrease in the quality of life similar to other chronic diseases such as arthritis or heart conditions [3].

References

  1. 1.
    Adammek M, Greve B, Kässens N, et al. MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil Steril. 2013;99(5):1346–1355.e5.CrossRefGoogle Scholar
  2. 2.
    Sampson JA. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol. 1927;3(2):93–110.43.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Simoens S, Dunselman G, Dirksen C, et al. The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum Reprod. 2012;27(5):1292–9.CrossRefGoogle Scholar
  4. 4.
    Nisolle MDJ. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997;68(4):585–96.CrossRefGoogle Scholar
  5. 5.
    Strowitzki T, Germeyer A, Popovici R, von Wolff M. The human endometrium as a fertility-determining factor. Hum Reprod Update. 2006;12(5):617–30.  https://doi.org/10.1093/humupd/dml033.CrossRefGoogle Scholar
  6. 6.
    Götte M, Wolf M, Staebler A, et al. Aberrant expression of the pluripotency marker SOX-2 in endometriosis. Fertil Steril. 2011;95(1):338–41.CrossRefGoogle Scholar
  7. 7.
    Schüring AN, Schulte N, Kelsch R, et al. Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertil Steril. 2011;95(1):423–6.CrossRefGoogle Scholar
  8. 8.
    Anaf V, Simon P, El Nakadi I, et al. Relationship between endometriotic foci and nerves in rectovaginal endometriotic nodules. Hum Reprod. 2000;15(8):1744–50.CrossRefGoogle Scholar
  9. 9.
    Donnez O, Orellana R, Van Kerk O, Dehoux JP, Donnez J, Dolmans MM. Invasion process of induced deep nodular endometriosis in an experimental baboon model. Fertil Steril. 2015;104(2):491–497.e2.CrossRefGoogle Scholar
  10. 10.
    Orellana R, García-Solares J, Donnez J, van Kerk O, Dolmans MM, Donnez O. Important role of collective cell migration and nerve fiber density in the development of deep nodular endometriosis. Fertil Steril. 2017;107(4):987–995.e5.CrossRefGoogle Scholar
  11. 11.
    Béliard A, Noël A, Foidart J-M. Reduction of apoptosis and proliferation in endometriosis. Fertil Steril. 2004;82(1):80–5.CrossRefGoogle Scholar
  12. 12.
    Saare M, Rekker K, Laisk-Podar T, et al. Challenges in endometriosis miRNA studies – from tissue heterogeneity to disease specific miRNAs. Biochim Biophys Acta. 2017;1863(9):2282–92.CrossRefGoogle Scholar
  13. 13.
    MacFarlane L-A, Murphy PR. MicroRNA. Curr Genomics. 2010;11(7):537–61.CrossRefGoogle Scholar
  14. 14.
    NCBI. SOX2 SRY-box 2 [Homo sapiens (human)]. 2018. https://www.ncbi.nlm.nih.gov/gene/6657. Zugriff am 28 Mar 2018.
  15. 15.
    Go MJ, Takenaka C, Ohgushi H. Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities. Exp Cell Res. 2008;314(5):1147–54.CrossRefGoogle Scholar
  16. 16.
    NCBI. IL6ST interleukin 6 signal transducer [Homo sapiens (human)]. May 2014. https://www.ncbi.nlm.nih.gov/gene/3572. Zugriff am 29 Mar 2018.
  17. 17.
    Kästingschäfer CS, Schäfer SD, Kiesel L, et al. miR-142-3p is a novel regulator of cell viability and proinflammatory signalling in endometrial stroma cells. Reprod Biomed Online. 2015;30(5):553–6.CrossRefGoogle Scholar
  18. 18.
    Yuan ZL, Guan YJ, Wang L, et al. Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol. 2004;24(21):9390–400.CrossRefGoogle Scholar
  19. 19.
    Kaponis A, Iwabe T, Taniguchi F, et al. The role of NF-kappaB in endometriosis. Front Biosci (Schol Ed). 2012;4:1213–34.Google Scholar
  20. 20.
    Bao H, Yao Q-P, Huang K, et al. Platelet-derived miR-142-3p induces apoptosis of endothelial cells in hypertension. Cell Mol Biol (Noisy-le-Grand). 2017;63(4):3–9.CrossRefGoogle Scholar
  21. 21.
    Carraro G, Shrestha A, Rostkovius J, et al. miR-142-3p balances proliferation and differentiation of mesenchymal cells during lung development. Development. 2014;141(6):1272–81.CrossRefGoogle Scholar
  22. 22.
    NCBI. STS steroid sulfatase [Homo sapiens (human)]. Mar 2016. Zugriff am 30 Mar 2018.Google Scholar
  23. 23.
    Colette S, Defrere S, Lousse JC, et al. Inhibition of steroid sulfatase decreases endometriosis in an in vivo murine model. Hum Reprod. 2011;26(6):1362–70.CrossRefGoogle Scholar
  24. 24.
    Eggers JC, Martino V, Reinbold R, et al. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online. 2016;32(4):434–45.CrossRefGoogle Scholar
  25. 25.
    Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J Biol Chem. 1996;271(33):20009–17.CrossRefGoogle Scholar
  26. 26.
    NCBI. ZEB1 zinc finger E-box binding homeobox 1 [Homo sapiens (human)]. 2010. Zugriff am 30 Mar 2018.Google Scholar
  27. 27.
    Yang Y-M, Yang W-X. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget. 2017;8(25):41679–89.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005;6(8):622–34.CrossRefGoogle Scholar
  29. 29.
    Ibrahim SA, Yip GW, Stock C, et al. Targeting of syndecan-1 by microRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism. Int J Cancer. 2012;131(6):E884–96.CrossRefGoogle Scholar
  30. 30.
    Schneider C, Kassens N, Greve B, et al. Targeting of syndecan-1 by micro-ribonucleic acid miR-10b modulates invasiveness of endometriotic cells via dysregulation of the proteolytic milieu and interleukin-6 secretion. Fertil Steril. 2013;99(3):871–881.e1.CrossRefGoogle Scholar

Copyright information

© International Society of Gynecological Endocrinology 2019

Authors and Affiliations

  1. 1.Clinic for Gynaecology and ObstetricsUniversity Hospital MünsterMünsterGermany

Personalised recommendations