Advertisement

Wireless UWB Sensor System for Robot Gripper Monitoring in Non-cooperative Environments

  • Pavol GalajdaEmail author
  • Maria Svecova
  • Milos Drutarovsky
  • Stanislav Slovak
  • Martin Pecovsky
  • Miroslav Sokol
  • Dusan Kocur
Chapter
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 14)

Abstract

In this chapter, the ultra-wideband (UWB) technology for localization and tracking estimation of the robot gripper (behind obstacles) in industrial environments is presented. We investigate the possibilities of the UWB radar sensor network (UWB-SN) employing the centralized data fusion method that can significantly improve tracking capabilities in a complex industrial environment. The UWB-SN hardware nodes that use a new wireless UWB sensor with an embedded controller to detect and track online or off-line movement of robot gripper is also presented. This hardware node uses M-sequence UWB radar front-end, and low-cost ARM based quad-core microcomputer (ARM-MC) as a main signal processing block. The ARM-MC based on Raspberry Pi provides processing power for the pre-processing of received raw radar signals, algorithms for detection and estimation of target’s coordinates, and finally compression of data sent to the central node (CN). Low-rate data streams (3600–6000 bits/s/node) of compressed target coordinates are sent from each sensor node (SN) to the CN by using RF transceivers with integrated ARM microcontroller. The chapter contains experimental results from measurements where SNs and antennas are located behind the wall or opaque material. Experimental testing confirmed the power of real-time performance of developed UWB-SN hardware and acceptable precision of software. The introduced modular architecture of UWB-SN can be used for fast development and testing of new real-time localization and tracking applications required for visual feedback to robots. It enables their safe orientation in the industrial environment, coping with obstacles and at the same time cooperate as well as avoid contact with humans.

Notes

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors would like to thank the Slovak Cultural and Educational Grant Agency (KEGA) under the Contract No. 062TUKE-4/2017, the Slovak Research and Development Agency under the contract No. APVV-15-0692 and Scientific Grant Agency (VEGA) under the contract No. 1/0772/17.

References

  1. 1.
    C. Wöhler, 3D Computer Vision: Efficient Methods and Applications (Springer, Dordrecht, X. media. publishing, 2009). ISBN 978-3642017315Google Scholar
  2. 2.
    D. Espes, A. Daher, Y. Autret, E. Radoi, P. Le Parc, Ultra-wideband positioning for assistance robots for elderly, in The 10th IASTED International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA 2013), vol. 8, Austria (2012), Feb 2013Google Scholar
  3. 3.
    A. Santamaria-Navarro, E.H. Teniente, M. Morta, J. Andrade-Cetto, Terrain classification in complex 3D outdoor environments. J. Field Robot. 32(1), 42–60 (2015)CrossRefGoogle Scholar
  4. 4.
    G. Alenya, S. Foix, C. Torras, ToF cameras for active vision in robotics. Sens. Actuators A Phys. 218, 1022 (2014)Google Scholar
  5. 5.
    L. Perez, I. Rodriguez, N. Rodriguez, R. Usamentiaga, D.F. Garcia, Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors (Basel) 16(3), 335 (2016)Google Scholar
  6. 6.
    A. Ward, A. Jones, A. Hopper, A new location technique for the active office. IEEE Pers. Commun. 4(5), 42–47 (1997)CrossRefGoogle Scholar
  7. 7.
    AT&T Laboratories Cambridge. The Bat ultrasonic location system. http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/. Accessed 1 July 2005
  8. 8.
    S. Hann, J.H. Kim, S.Y. Jung, C.S. Park, White LED ceiling lights positioning systems for optical wireless indoor applications, in 36th European Conference and Exhibition on Optical Communication (ECOC ’10), Sept 2010Google Scholar
  9. 9.
    J. Sachs, Handbook of Ultra-Wideband Short-Range Sensing: Theory, Sensors, Applications (John Wiley and Sons, 2013)Google Scholar
  10. 10.
    R. Zetik, M. Eschrich, S. Jovanoska, R.S. Thoma, Looking behind a corner using multipath-exploiting UWB radar. IEEE Trans. Aerosp. Electron. Syst. 51(3), 1916–1926 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Yamauchi, All-weather perception for man-portable robots using ultra-wideband radar, in 2010 IEEE International Conference on Robotics and Automation, pp. 3610–3615, May 2010Google Scholar
  12. 12.
    J. Taylor, Ultra-wideband Radar Technology (CRC Press, 2001)Google Scholar
  13. 13.
    K. Chetty, G. Smith, H. Guo, K. Woodbridge, Target detection in high clutter using passive bistatic WiFi radar, in 2009 IEEE Radar Conference, pp. 1–5, May 2009Google Scholar
  14. 14.
    F. Adib, D. Katabi, See through walls with WiFi. SIGCOMM Comput. Commun. Rev. 43(4), 75–86 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Chang, A. Sahai, Object tracking in a 2D UWB sensor network, in Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, USA, vol. I, pp. 1252–1256, Nov 2004Google Scholar
  16. 16.
    R. Salman, I. Willms, A mobile security robot equipped with UWB-radar for super-resolution indoor positioning and localisation applications, in 2012 International Conference on Indoor Positioning and Indoor Navigation, Sydney, NSW, Australia, 13–15 Nov 2012Google Scholar
  17. 17.
    D. Espes, A. Daher, Y. Autret, E. Radoi, P. Le Parc, Ultra-wideband positioning for assistance robots for elderly, in The 10th IASTED International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA 2013), Feb 2013, Austria (2012), p. 8Google Scholar
  18. 18.
    L. Zwirello, T. Schipper, M. Harter, T. Zwick, UWB localization system for indoor applications: concept, realization and analysis. J. Electr. Comput. Eng. 2012 (2012) (Hindawi Publishing Corporation)Google Scholar
  19. 19.
    Federal Communications Commission (FCC), Revision of part 15 of the commissions rules regarding ultra wideband transmission systems, in First Report and Order, ET Docket 98-153, FCC 02-48; Adopted: Feb 2002; Released: Apr 2002Google Scholar
  20. 20.
    Electronic Communications Committee (ECC), The harmonised conditions for devices using Ultra-Wideband (UWB) technology in bands below 10.6 GHz, in Decision (06) 04, Approved: Mar 2006Google Scholar
  21. 21.
    D. Kocur, J. Rovnakova, D. Urdzik, Short-Range UWB radar application: problem of mutual shadowing between targets. Elektrorevue 2(4), 37–43 (2011)Google Scholar
  22. 22.
    D. Urdzik, R. Zetfk, D. Kocur, J. Rovnakova, Shadowing effect analysis at multiple moving persons tracking by UWB radar, in PIERS Proceedings, vol. 25, Kuala Lumpur, Malaysia (The Electromagnetics Academy, Cambridge, 2012)Google Scholar
  23. 23.
    D. Kocur, J. Fortes, M. Svecova, Multiple moving person tracking by UWB sensors: the effect of mutual shielding persons and methods reducing its impacts. EURASIP J. Wirel. Commun. Netw. 2017(I) (2017)Google Scholar
  24. 24.
    J. Rovnakova, D. Kocur, Short Range Tracking of Moving Persons by UWB Sensor Network (EuRAD, Manchester, Great Britain, 2011), pp. 321–324Google Scholar
  25. 25.
    M. Drutarovsky, D. Kocur, M. Svecova, N.M. Garcia, Real-time wireless UWB sensor network for person monitoring, in 2017 14th International Conference on Telecommunications (ConTEL), Zagreb, Croatia, 28–30 June 2017Google Scholar
  26. 26.
    P. Galajda, A. Galajdova, S. Slovak, M. Pecovsky, M. Drutarovsky, M. Sukop, I.B.A. Samaneh, Robot vision ultra-wideband wireless sensor in non-cooperative industrial environments. Int. J. Adv. Rob. Syst. 15(4), 1–12 (2018)Google Scholar
  27. 27.
    S. Jovanoska, R. Thoma, Multiple target tracking by a distributed UWB sensor network based on the PHD filter, in 2012 15th International Conference on Information Fusion, pp. 1095–1102, July 2012Google Scholar
  28. 28.
    M. Chiani, A. Giorgetti, M. Mazzotti, R. Minutolo, E. Paolini, Target detection metrics and tracking for UWB radar sensor networks, in 2009 IEEE International Conference on Ultra-Wideband, pp. 469–474, Sept 2009Google Scholar
  29. 29.
    J. Rovnakova, Complete Signal Processing for Through Wall Tracking of Moving Targets (LAP LAMBERT Academic Publishing, Germany, 2010)Google Scholar
  30. 30.
    D. Kocur, J. Rovnakova, D. Urdzik, Handbook of ultra-wideband short-range sensing, in Multiple Moving Target Tracking by UWB Radar Sensor Network (Wiley-VCH, 2013)Google Scholar
  31. 31.
    T. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, J. Haapola, UWB wireless sensor networks: UWEN—a practical example. IEEE Commun. Mag. 42(12), 27–32 (2004)CrossRefGoogle Scholar
  32. 32.
    R. Zetik, Synchronization and interference of M-sequence UWB radar systems, in Personal Communication. Ilmenau University of Technology, Ilmenau, Germany (2011)Google Scholar
  33. 33.
    D. Kocur, P. Kazimir, J. Hoffmann, M-sequence UWB sensor signal degradation by narrowband signal, in 2015 25th International Conference Radioelektronika, pp. 321–325, Apr 2015Google Scholar
  34. 34.
    J. Rovnakova, D. Kocur, Experimental comparison of two UWB radar systems for through-wall tracking application. Acta Electrotech. Inform. 12(2), 59–66 (2012)CrossRefGoogle Scholar
  35. 35.
    B. Razavi, Principles of Data Conversion System Design, vol. 126 (IEEE press New York, 1995)Google Scholar
  36. 36.
    H. Badaoui, Y. Frignac, M. Feham, Pseudo random binary sequences analysis for the modeling of optical DPSK transmission systems. Int. J. Comput. Sci. Commun. 1(2), 369–372 (2010)Google Scholar
  37. 37.
    J. Sachs, M. Kmec, R. Herrmann, K. Schilling, R. Zetik, P. Rauschenbach, Ultrawideband pseudo-noise radar: principle of function state of the art applications, in NATO Specialist Meeting, SET, vol. 120 (2008)Google Scholar
  38. 38.
    J. Sachs, M. Kmec, R. Zetik, P. Peyerl, P. Rauschenbach, Ultra wideband radar assembly kit, in IGARSS, vol. 5 (2005), pp. 372–375Google Scholar
  39. 39.
    M. Kmec, J. Sachs, P. Peyerl, P. Rauschenbach, R. Thoma, R. Zetik, A novel ultrawideband real-time MIMO channel sounder architecture, in XXVIIIth General Assembly of URSI (2005), pp. 23–29Google Scholar
  40. 40.
    I. Hilger, C. Geyer, F. Thiel, F.S. Di Clemente, F. Seifert, G. Rimkus, J. Sachs, K. Dahlke, M. Helbig, M. Hein et al., UltraMEDIS-Ultra-Wideband Sensing in Medicine (INTECH Open Access Publisher, 2013)Google Scholar
  41. 41.
    A. Pietrikova, K. Ruman, T. Rovensky, I. Vehec, Impact analysis of LTCC materials on microstrip filters’ behaviour up to 13 GHz. Microelectron. Int. 32(3), 122–125 (2015)CrossRefGoogle Scholar
  42. 42.
    J. Hee, Impulse response measurements using MLS, Aug 2003. http://jenshee.dk/signalprocessing/mls.pdf
  43. 43.
  44. 44.
  45. 45.
    M. Drutarovsky, D. Kocur, Optimization of fast Hadamard deconvolution implementation for ARM CPU based M-sequence UWB radar sensor node, in 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 Nov 2017Google Scholar
  46. 46.
    ADuCRF101, Precision analog microcontroller with RF transceiver, ARM Cortex-M3, Analog Devices. https://www.analog.com/media/en/technical-documentation/data-sheets/aducrf101.pdf
  47. 47.
    MDK microcontroller development kit, ARM Keil microcontroller tools. http://www2.keil.com/mdk5/
  48. 48.
    D. Kocur, J. Rovnakova, M. Svecova, Through wall tracking of moving targets by M-sequence UWB radar, in Towards Intelligent Engineering and Information Technology, ed. by I.J. Rudas, J. Fodor, J. Kacprzyk (Springer, Berlin, Heidelberg, 2009), pp. 349–364Google Scholar
  49. 49.
    G. Minkler, J. Minkler, CFAR: The Principles of Automatic Radar Detection in Clutter (Magellan Book Company, Baltimore, MD, USA, 1990)Google Scholar
  50. 50.
    H. Rohling, Radar CFAR thresholding in clutter and multiple target situations. IEEE Trans. Aerosp. Electron. Syst. AES-19, 608–621 (1983)Google Scholar
  51. 51.
    P. Dutta, A. Arora, S. Bibyk, Towards radar-enabled sensor networks, in Proceedings of the 5th International Conference on Information Processing in Sensor Networks, Nashville, TN, USA, pp. 467–474, 19–21 Apr 2006Google Scholar
  52. 52.
    J. Rovnakova, D. Kocur, TOA estimation and data association for through wall tracking of moving targets. EURASIP J. Wireless Commun. Netw. Spec. Issue Radar Sonar Sens. Netw. 2010 (2010) (Springer International Publishing)Google Scholar
  53. 53.
    J. Rovnakova, D. Kocur, Compensation of wall effect for through wall tracking of moving targets. Radioengineering 18(2), 189–195 (2009)Google Scholar
  54. 54.
    M. Aftanas, J. Rovnakova, M. Drutarovsky, D. Kocur, Efficient method of TOA estimation for through wall imaging by UWB radar, in Proceedings of the 2008 IEEE International Conference on Ultra-Wideband (ICUWB), Hannover, Germany, pp. 101–104, 10–12 Sept 2008Google Scholar
  55. 55.
    J. Rovnakova, D. Kocur, P. Kazimir, Investigation of localization accuracy for UWB radar operating in complex environment. Acta Polytech. Hung. 10(5), 203–219 (2013)Google Scholar
  56. 56.
    M. Svecova, D. Kocur, Time of arrival complementing method for cooperative localization of a target by two-node UWB sensor network. Radioengineering 25(3), 602–611 (2016)CrossRefGoogle Scholar
  57. 57.
    M.S.Grewal, A.P. Andrews, Kalman Filtering: Theory and Practice (Prentice Hall, 2003)Google Scholar
  58. 58.
    B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications (Artech House, 2004)Google Scholar
  59. 59.
    J. Schneider, J. Gamec, Overview of UWB low-profile planar antennas. Acta Electrotech. Inform. 14(2), 55–59 (2014)CrossRefGoogle Scholar
  60. 60.
    D. Kocur, M. Svecova, J. Rovnakova, Through-the-wall localization of a moving target by two independent ultrawideband (UWB) radar systems. Sensors 13, 11969–11997 (2013)CrossRefGoogle Scholar
  61. 61.
    P. Kazimir, D. Kocur, Simple method of uncooperative human beings localisation in 3D space by UWB radar. Acta Electrotech. Inform. 14(4), 8–12 (2014)CrossRefGoogle Scholar
  62. 62.
    J. Rovnakova, D. Kocur, UWB Radar Signal Processing for Through Wall Tracking of Multiple Moving Targets (EuRAD, Paris, France, 2010), pp. 372–375Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Pavol Galajda
    • 1
    Email author
  • Maria Svecova
    • 2
  • Milos Drutarovsky
    • 1
  • Stanislav Slovak
    • 1
  • Martin Pecovsky
    • 1
  • Miroslav Sokol
    • 1
  • Dusan Kocur
    • 1
  1. 1.Faculty of Electrical Engineering and Informatics, Department of Electronics and Multimedia CommunicationsTechnical University of KosiceKosiceSlovakia
  2. 2.Faculty of Electrical Engineering and Informatics, Department of Mathematics and Theoretical InformaticsTechnical University of KosiceKosiceSlovakia

Personalised recommendations