Advertisement

The Rippling Effect of Non-linearities

  • Virginia L. M. SpieglerEmail author
  • Mohamed M. Naim
  • Junyi Lin
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 276)

Abstract

Non-linearities can lead to unexpected dynamic behaviours in supply chain systems that could then either trigger disruptions or make the response and recovery process more difficult. In this chapter, we take a control-theoretic perspective to discuss the impact of non-linearities on the ripple effect. This chapter is particularly relevant for researchers wanting to learn more about the different types of non-linearities that can be found in supply chain systems, the existing analytical methods to deal with each type of non-linearity and future scope for research based on the current knowledge in this field.

References

  1. Christopher, M., & Peck, H. (2004). Building the resilient supply chain. International Journal of Logistics Management, 15(2), 1–14.CrossRefGoogle Scholar
  2. Colicchia, C., Dallari, F., & Melacini, M. (2010). Increasing supply chain resilience in a global sourcing context. Production Planning & Control: The Management of Operations, 21(7), 680–694.CrossRefGoogle Scholar
  3. Cook, P. A. (1986). Nonlinear Dynamical Systems. Exeter, UK: Prentice.Google Scholar
  4. Cross, R., Grinfeld, M., & Lamba, H. (2009). Hysteresis and economics. IEEE Control Systems, 29(1), 30–43.CrossRefGoogle Scholar
  5. Dolgui, A., Ben-Ammar, O., Hnaien, F., & Louly, M. A. (2013). A state of the art on supply planning and inventory control under lead time uncertainty. Studies in Informatics and Control, 22(3), 255–268.CrossRefGoogle Scholar
  6. Dolgui, A., Ivanov, D., & Sokolov, B. (2018). Ripple effect in the supply chain: an analysis and recent literature. International Journal of Production Research, 56(1–2), 414–430.CrossRefGoogle Scholar
  7. Evans, G. N., & Naim, M. M. (1994). The dynamics of capacity constrained supply chain. In Proceedings of International System Dynamics Conference (pp. 28–39). Stirling: Scotland.Google Scholar
  8. Gelb, A., & Velde, W. V. (1968). Multiple-input describing functions and nonlinear system design. McGraw-Hill.Google Scholar
  9. Göcke, M. (2002). Various concepts of hysteresis applied in economics. Journal of Economic Surveys, 16(2), 167–188.CrossRefGoogle Scholar
  10. Gray, J. V., Skowronski, K., Esenduran, G., & Rungtusanatham, M. J. (2013). The reshoring phenomenon: What supply chain academics ought to know and should do. Journal of Supply Chain management, 49(2), 27–33.CrossRefGoogle Scholar
  11. Größler, A., & Schieritz, N. (2005). Of stocks, flows, agents and rules-“strategic” simulations in supply chain research. In H. Kotzab, S. Seuring, M. Müller, & G. Reiner (Eds.), Research methodologies in supply chain management. Germany: Physica-Verlag Heiedlberg.Google Scholar
  12. Grübbstrom, R., & Wang, Z. (2000). Introducing capacity limitations into multi-level, multi-stage production-inventory systems applying the input-output: Laplace transform approach. International Journal of Production Research, 38(17), 4227–4234.CrossRefGoogle Scholar
  13. Ivanov, D., & Sokolov, B. (2013). Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis, and adaptation of performance under uncertainty. European Journal of Operational Research, 224(2), 313–323.CrossRefGoogle Scholar
  14. Ivanov, D., Sokolov, B., & Dolgui, A. (2014). The ripple effect in supply chains: Trade-off ‘efficiency-flexibility- resilience’ in disruption management. International Journal of Production Research, 52(7), 2154–2172.CrossRefGoogle Scholar
  15. Jeong, S., Oh, Y., & Kim, S. (2000). Robust control of multi-echelon production-distribution systems with limited decision policy. KSME International Journal, 14(4), 380–392.CrossRefGoogle Scholar
  16. Johansson, M. (2003). Piecewise Linear Control Systems. Berlin, Germany: Springer.CrossRefGoogle Scholar
  17. Kearney, A. T. (2003). Supply chains in a vulnerable, volatile world. Executive Agenda, 6(3), 5–16.Google Scholar
  18. Kogut, B., & Kulatilaka, N. (1994). Operating flexibility, global manufacturing, and the option value of a multinational network. Management Science, 10, 123–139.CrossRefGoogle Scholar
  19. Kouvelis, P. (1998). Global sourcing strategies under exchange rate uncertainty. In S. Tayur, R. Ganeshan, & M. Magazine (Eds.), Quantitative models for supply chain management. Springer.Google Scholar
  20. Lang, D., & de Peretti, C. (2009). A strong hysteretic model of Okun’s law: theory and a preliminary investigation. International Review of Applied Economics, 23(4), 445–462.CrossRefGoogle Scholar
  21. Lin, J., Naim, M., Spiegler, V. (2018a). Delivery time dynamics in an assemble-to-order inventory and order based production control system. In Presented at: 20th International Working Seminar on Production Economics., Innsbruck, Austria, 19–23 February, 2018.Google Scholar
  22. Lin, J., Spiegler, V., & Naim, M. (2018). Dynamic analysis and design of a semiconductor supply chain: A control engineering approach. International Journal of Production Research, 56, 4585–4611.CrossRefGoogle Scholar
  23. Manners-Bell, J. (2018). Supply Chain Risk Management: Understanding Emerging Threats to Global Supply Chains. London: Kogan Page.Google Scholar
  24. Mohapatra, P. K. J. (1980). Nonlinearity in system dynamics models. Dynamica, 6(1), 36–52.Google Scholar
  25. Naim, M. M., Spiegler, V. L., Wikner, J., & Towill, D. R. (2017). Identifying the causes of the bullwhip effect by exploiting control block diagram manipulation with analogical reasoning. European Journal of Operational Research, 263, 240–246.CrossRefGoogle Scholar
  26. Odame, K., & Hasler, P. E. (2010). Nonlinear circuit analysis via perturbation methods and hardware prototyping. VLSI Design, 2010, 1–10.CrossRefGoogle Scholar
  27. Rugh, W. J. (2002). Nonlinear system theory: The Volterra/Wiener approach. The Johns Hopkins University Press.Google Scholar
  28. Spiegler, V., & Naim, M. (2017). Investigating sustained oscillations in nonlinear production and inventory control models. European Journal of Operational Research, 261, 572–583.CrossRefGoogle Scholar
  29. Spiegler, V. L. M., Naim, M. M., & Wikner, J. (2012). A control engineering approach to the assessment of supply chain resilience. International Journal of Production Research, 50(21), 6162–6187.CrossRefGoogle Scholar
  30. Spiegler, V. L. M., Potter, A. T., Naim, M. M., & Towill, D. R. (2016a). The value of nonlinear control theory in investigating the underlying dynamics and resilience of a grocery supply chain. International Journal of Production Research, 54(1), 265–286.Google Scholar
  31. Spiegler, V. L., Naim, M. M., Towill, D. R., & Wikner, J. (2016b). A technique to develop simplified and linearised models of complex dynamic supply chain systems. European Journal of Operational Research, 251(3), 888–903.Google Scholar
  32. Spiegler, V., Naim, M., Syntetos, A., & Zhou, L. (2018). Understanding the effects of lead-time disturbance in supply chains: on the design of an adaptive model to cope with lead-time changes. In The 60th Conference of Operational Research (OR60), 11–13 September. UK: Lancaster.Google Scholar
  33. Vukic, Z., Kuljaca, L., Donlagic, D., & Tesaknjak, S. (2003). Nonlinear Control Systems. New York: Marcel Dekker.CrossRefGoogle Scholar
  34. Wang, X., & Disney, S. M. (2012). Stability analysis of constrained inventory systems. European Journal of Operational Research, 223, 86–95.CrossRefGoogle Scholar
  35. Wang, G., & Gunasekaran, A. (2017). Modeling and analysis of sustainable supply chain dynamics. Annals of Operations Research, 250, 521–536.CrossRefGoogle Scholar
  36. Wang, X., Disney, S., & Wang, J. (2014). Exploring the oscilatory dynamics of a forbidden returns inventory system. International Journal of Production Economics, 147(A), 3–12.Google Scholar
  37. Wang, Z., Wang, X., & Ouyang, Y. (2015). Bounded growth of the bullwhip effect under a class of nonlinear ordering policies. European Journal of Operational Research, 247(1), 72–82.CrossRefGoogle Scholar
  38. Wikner, J., Naim, M. M., & Towill, D. R. (1992). The system simplification approach in understanding the dynamic behaviour of a manufacturing supply chain. Journal of Systems Engineering, 2, 164–178.Google Scholar
  39. Wikner, J., Naim, M. M., & Rudberg, M. (2007). Exploiting the order book for mass customized manufacturing control systems with capacity limitations. IEEE Transactions on Engineering Management, 54(1), 145–155.CrossRefGoogle Scholar
  40. Zhao, Y., Zhao, C., He, M., & Yang, C. (2016). A state-feedback approach to inventory control: Analytical and empirical studies. Production and Operations Management Society, 25(3), 535–547.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Virginia L. M. Spiegler
    • 1
    Email author
  • Mohamed M. Naim
    • 2
  • Junyi Lin
    • 2
  1. 1.Kent Business SchoolUniversity of KentCanterburyUK
  2. 2.Cardiff Business SchoolCardiff UniversityCardiffUK

Personalised recommendations