Affective Decision-Making in Ultimatum Game: Responder Case

  • Jitka HomolováEmail author
  • Anastasija Černecka
  • Tatiana V. Guy
  • Miroslav Kárný
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11450)


The paper focuses on prescriptive affective decision making in Ultimatum Game (UG). It describes preliminary results on incorporating emotional aspects into normative decision making. One of the players (responder) is modelled via Markov decision process. The responder’s reward function is the weighted combination of two components: economic and emotional. The first component represents pure monetary profit while the second one reflects overall emotional state of the responder. The proposed model is tested on simulated data.


Decision making Emotions in economic game Markov decision process Ultimatum Game 



We would like to thank Eliška Zugarová for comments that greatly influenced the manuscript. The authors express their gratitude to anonymous reviewers for the valuable suggestions.


  1. 1.
    MATLAB version 7.5.0 (R2007b): The MathWorks Inc., Natick, Massachusetts, USA (2010)Google Scholar
  2. 2.
    Binmore, K.G.: Game Theory and the Social Contract: Just Playing, vol. 2. The MIT Press, Cambridge (1998)Google Scholar
  3. 3.
    Bosman, R., van Winden, F.: Emotional hazard in a power-to-take experiment. Econ. J. 112(474), 147–169 (2002)CrossRefGoogle Scholar
  4. 4.
    Capra, M.: Mood-driven behavior in strategic interactions. Am. Econ. Rev. 94(2), 367–372 (2004)CrossRefGoogle Scholar
  5. 5.
    Cox, J.C., Friedman, D., Gjerstad, S.: A tractale model of reciprocity and fairness. Games Econ. Behav. 59(1), 17–45 (2007). Scholar
  6. 6.
    Fehr, E., Schmidt, K.M.: A theory of fairness, competition, and cooperation. Q. J. Econ. 114(3), 817–868 (1999). Scholar
  7. 7.
    Grecucci, A., Giorgetta, C., van’t Wout, M., Bonini, N., Sanfey, A.G.: Reappraising the ultimatum: an FMRI study of emotion regulation and decision making. Cereb. Cortex 23, 399–410 (2013)CrossRefGoogle Scholar
  8. 8.
    Guth, W., Schmittberger, R., Schwarze, B.: An experimental analysis of ultimatum bargaining. J. Econ. Behav. Org. 3(4), 367–388 (1982)CrossRefGoogle Scholar
  9. 9.
    Haselhuhn, M.P., Mellers, B.A.: Emotions and cooperation in economic games. Elsevier 23(1), 24–33 (2005). Scholar
  10. 10.
    Livet, P.: Rational choice, neuroeconomy and mixed emotions. Philos. Trans. R. Soc. B 365, 259–269 (2010)CrossRefGoogle Scholar
  11. 11.
    Loewenstein, G., Lerner, J.S.: The role of affect in decision making. In: Handbook of Affective Sciences, pp. 619–642. Oxford University Press (2003). (Chap. 31)Google Scholar
  12. 12.
    McGraw, A.P., Larsen, J.T., Kahneman, D., Schkade, D.: Comparing gains and losses. Psychol. Sci. 21(10), 1438–1445 (2010)CrossRefGoogle Scholar
  13. 13.
    Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)CrossRefGoogle Scholar
  14. 14.
    Rabin, M.: Incorporating fairness into game theory and economics. Am. Econ. Rev. 83(5), 1281–1302 (1993)Google Scholar
  15. 15.
    Sanfey, A., Rilling, J., Aronson, J., Nystrom, L., Cohen, J.: The neural basis of economic decision-making in the ultimatum game. Science 300, 1755–1758 (2003)CrossRefGoogle Scholar
  16. 16.
    Srivastava, J., Espinoza, F., Fedorikhin, A.: Coupling and decoupling of unfairness and anger in ultimatum bargaining. J. Behav. Decis. Making 22, 475–489 (2008). Scholar
  17. 17.
    Tamarit, I., Sanchez, A.: Emotions and strategic behavior: the case of the ultimatum game. PloS One 11(7) (July 2016). Scholar
  18. 18.
    Woodruffe-Peacock, C., Turnbull, G.M., Johnson, M.A., Elahi, N., Preston, G.C.: The quick mood scale: development of a simple mood assessment scale for clinical pharmacology studies. Hum. Psychopharmatology Clin. Exp. 13(1), 53–58 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jitka Homolová
    • 1
    Email author
  • Anastasija Černecka
    • 1
  • Tatiana V. Guy
    • 1
  • Miroslav Kárný
    • 1
  1. 1.The Czech Academy of Sciences, Institute of Information Theory and Automation, Adaptive System DepartmentPrague 8Czech Republic

Personalised recommendations