Advertisement

Vagus Nerve Stimulation

  • Simon AkermanEmail author
  • Marcela Romero-Reyes
Chapter
Part of the Headache book series (HEAD)

Abstract

The use of neuromodulatory devices for the treatment of neurological disorders provides a non-invasive and non-pharmacologic therapeutic approach for patients. Recent years have seen a significant increase in the development and assessment of the efficacy of these devices to treat primary headache and facial pain disorders. Non-invasive stimulation of the cervical vagus nerve afferent projection is one such approach whose development is very much advanced, having undergone several clinical trials to assess its efficacy in the treatment of both migraine and cluster headache. There have also been a series of preclinical studies to provide a translational validation of its clinical efficacy, and also as a way to understand the potential mechanism of therapeutic action involved. In this chapter, we will review the anatomy and physiology of the vagus nerve and provide clinical and preclinical evidence to support the medical use of vagus nerve stimulation for the treatment of primary headache and, potentially, facial pains, hypothesising likely mechanism of action.

Keywords

Cervical vagus nerve stimulation VNS Invasive Non-invasive Migraine Cluster headache Facial pain Trigeminovascular Nucleus tractus solitarius 

References

  1. 1.
    Mauskop A. Vagus nerve stimulation relieves chronic refractory migraine and cluster headaches. Cephalalgia. 2005;25(2):82–6.  https://doi.org/10.1111/j.1468-2982.2005.00611.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Cecchini AP, Mea E, Tullo V, Curone M, Franzini A, Broggi G, et al. Vagus nerve stimulation in drug-resistant daily chronic migraine with depression: preliminary data. Neurol Sci. 2009;30(Suppl 1):S101–4.  https://doi.org/10.1007/s10072-009-0073-3.CrossRefPubMedGoogle Scholar
  3. 3.
    Hord ED, Evans MS, Mueed S, Adamolekun B, Naritoku DK. The effect of vagus nerve stimulation on migraines. J Pain. 2003;4(9):530–4.CrossRefGoogle Scholar
  4. 4.
    Sadler RM, Purdy RA, Rahey S. Vagal nerve stimulation aborts migraine in patient with intractable epilepsy. Cephalalgia. 2002;22(6):482–4.CrossRefGoogle Scholar
  5. 5.
    Goadsby PJ, Grosberg BM, Mauskop A, Cady R, Simmons KA. Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia. 2014;34(12):986–93.  https://doi.org/10.1177/0333102414524494.CrossRefPubMedGoogle Scholar
  6. 6.
    Barbanti P, Grazzi L, Egeo G, Padovan AM, Liebler E, Bussone G. Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J Headache Pain. 2015;16:61.  https://doi.org/10.1186/s10194-015-0542-4.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kinfe TM, Pintea B, Muhammad S, Zaremba S, Roeske S, Simon BJ, et al. Cervical non-invasive vagus nerve stimulation (nVNS) for preventive and acute treatment of episodic and chronic migraine and migraine-associated sleep disturbance: a prospective observational cohort study. J Headache Pain. 2015;16:101.  https://doi.org/10.1186/s10194-015-0582-9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nesbitt AD, Marin JC, Tompkins E, Ruttledge MH, Goadsby PJ. Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment. Neurology. 2015;84(12):1249–53.  https://doi.org/10.1212/WNL.0000000000001394.CrossRefPubMedGoogle Scholar
  9. 9.
    Gaul C, Diener HC, Silver N, Magis D, Reuter U, Andersson A, et al. Non-invasive vagus nerve stimulation for PREVention and acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia. 2016;36(6):534–46.  https://doi.org/10.1177/0333102415607070.CrossRefPubMedGoogle Scholar
  10. 10.
    Silberstein SD, Mechtler LL, Kudrow DB, Calhoun AH, McClure C, Saper JR, et al. Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache. 2016;56(8):1317–32.  https://doi.org/10.1111/head.12896.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Akerman S, Simon B, Romero-Reyes M. Vagus nerve stimulation suppresses acute noxious activation of trigeminocervical neurons in animal models of primary headache. Neurobiol Dis. 2017;102:96–104.  https://doi.org/10.1016/j.nbd.2017.03.004.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen SP, Ay I, Lopes de Morais A, Qin T, Zheng Y, Sadeghian H, et al. Vagus nerve stimulation inhibits cortical spreading depression. Pain. 2016;157(4):797–805.  https://doi.org/10.1097/j.pain.0000000000000437.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Oshinsky ML, Murphy AL, Hekierski H Jr, Cooper M, Simon BJ. Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain. 2014;155(5):1037–42.  https://doi.org/10.1016/j.pain.2014.02.009.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355–474.CrossRefGoogle Scholar
  15. 15.
    Ruffoli R, Giorgi FS, Pizzanelli C, Murri L, Paparelli A, Fornai F. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat. 2011;42(4):288–96.  https://doi.org/10.1016/j.jchemneu.2010.12.002.CrossRefPubMedGoogle Scholar
  16. 16.
    Kalia M, Sullivan JM. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol. 1982;211(3):248–65.  https://doi.org/10.1002/cne.902110304.CrossRefPubMedGoogle Scholar
  17. 17.
    Cheyuo C, Jacob A, Wu R, Zhou M, Coppa GF, Wang P. The parasympathetic nervous system in the quest for stroke therapeutics. J Cereb Blood Flow Metab. 2011;31(5):1187–95.  https://doi.org/10.1038/jcbfm.2011.24.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology. 2002;59(6 Suppl 4):S3–14.CrossRefGoogle Scholar
  19. 19.
    Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12(10):570–84.CrossRefGoogle Scholar
  20. 20.
    Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev. 2017;97(2):553–622.  https://doi.org/10.1152/physrev.00034.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain. 2013;154(Suppl 1):S44–53.  https://doi.org/10.1016/j.pain.2013.07.021.CrossRefPubMedGoogle Scholar
  22. 22.
    Van Leusden JW, Sellaro R, Colzato LS. Transcutaneous vagal nerve stimulation (tVNS): a new neuromodulation tool in healthy humans? Front Psychol. 2015;6:102.  https://doi.org/10.3389/fpsyg.2015.00102.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dietrich S, Smith J, Scherzinger C, Hofmann-Preiss K, Freitag T, Eisenkolb A, et al. A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomed Tech (Berl). 2008;53(3):104–11.  https://doi.org/10.1515/BMT.2008.022.CrossRefGoogle Scholar
  24. 24.
    Kraus T, Hosl K, Kiess O, Schanze A, Kornhuber J, Forster C. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J Neural Transm (Vienna). 2007;114(11):1485–93.  https://doi.org/10.1007/s00702-007-0755-z.CrossRefGoogle Scholar
  25. 25.
    Ferrari MD, Roon KI, Lipton RB, Goadsby PJ. Oral triptans (serotonin 5-HT(1B/1D) agonists) in acute migraine treatment: a meta-analysis of 53 trials. Lancet. 2001;358(9294):1668–75.CrossRefGoogle Scholar
  26. 26.
    Tassorelli C, Grazzi L, de Tommaso M, Pierangeli G, Martelletti P, Rainero I, et al. Non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine: a randomised controlled trial (OC-LB-002). Cephalalgia. 2017;37(S1):317–8.Google Scholar
  27. 27.
    Silberstein SD, Calhoun AH, Lipton RB, Grosberg BM, Cady RK, Dorlas S, et al. Chronic migraine headache prevention with noninvasive vagus nerve stimulation: The EVENT study. Neurology. 2016;87(5):529–38.  https://doi.org/10.1212/WNL.0000000000002918.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Straube A, Ellrich J, Eren O, Blum B, Ruscheweyh R. Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain. 2015;16:543.  https://doi.org/10.1186/s10194-015-0543-3.CrossRefPubMedGoogle Scholar
  29. 29.
    Goadsby PJ, de Coo IF, Silver N, Tyagi A, Ahmed F, Gaul C, et al. Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: a randomized, double-blind, sham-controlled ACT2 study. Cephalalgia. 2018;38(5):959–69.  https://doi.org/10.1177/0333102417744362.CrossRefPubMedGoogle Scholar
  30. 30.
    Simon B, Blake J. Mechanism of action of non-invasive cervical vagus nerve stimulation for the treatment of primary headaches. Am J Manag Care. 2017;23(17 Suppl):S312–S6.PubMedGoogle Scholar
  31. 31.
    Frangos E, Komisaruk BR. Access to vagal projections via cutaneous electrical stimulation of the neck: fMRI evidence in healthy humans. Brain Stimul. 2017;10(1):19–27.  https://doi.org/10.1016/j.brs.2016.10.008.CrossRefPubMedGoogle Scholar
  32. 32.
    Polak T, Markulin F, Ehlis AC, Langer JB, Ringel TM, Fallgatter AJ. Far field potentials from brain stem after transcutaneous vagus nerve stimulation: optimization of stimulation and recording parameters. J Neural Transm (Vienna). 2009;116(10):1237–42.  https://doi.org/10.1007/s00702-009-0282-1.CrossRefGoogle Scholar
  33. 33.
    Usami K, Kawai K, Sonoo M, Saito N. Scalp-recorded evoked potentials as a marker for afferent nerve impulse in clinical vagus nerve stimulation. Brain Stimul. 2013;6(4):615–23.  https://doi.org/10.1016/j.brs.2012.09.007.CrossRefPubMedGoogle Scholar
  34. 34.
    Nonis R, D’Ostilio K, Schoenen J, Magis D. Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: an electrophysiological study in healthy volunteers. Cephalalgia. 2017;37(13):1285–93.  https://doi.org/10.1177/0333102417717470.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Iversen HK, Olesen J. Headache induced by a nitric oxide donor (nitroglycerin) responds to sumatriptan. A human model for development of migraine drugs. Cephalalgia. 1996;16(6):412–8.CrossRefGoogle Scholar
  36. 36.
    Iversen HK, Olesen J, Tfelt-hansen P. Intravenous nitroglycerin as an experimental-model of vascular headache - basic characteristics. Pain. 1989;38(1):17–24.CrossRefGoogle Scholar
  37. 37.
    Akerman S, Romero-Reyes M. Targeting the central projection of the dural trigeminovascular system for migraine prophylaxis. J Cereb Blood Flow Metab. 2019;39(4):704–17.  https://doi.org/10.1177/0271678X17729280.CrossRefPubMedGoogle Scholar
  38. 38.
    Akerman S, Holland PR, Summ O, Lasalandra MP, Goadsby PJ. A translational in vivo model of trigeminal autonomic cephalalgias: therapeutic characterization. Brain. 2012;135(Pt 12):3664–75.CrossRefGoogle Scholar
  39. 39.
    Robert C, Bourgeais L, Arreto CD, Condes-Lara M, Noseda R, Jay T, et al. Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches. J Neurosci. 2013;33(20):8827–40.CrossRefGoogle Scholar
  40. 40.
    Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev. 2015;95(3):953–93.  https://doi.org/10.1152/physrev.00027.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8(2):136–42.CrossRefGoogle Scholar
  42. 42.
    Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R. Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol. 2011;69(5):855–65.CrossRefGoogle Scholar
  43. 43.
    Rasmussen BK, Olesen J. Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia. 1992;12:221–8.CrossRefGoogle Scholar
  44. 44.
    Akerman S, Goadsby PJ. Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport. 2005;16(12):1383–7.CrossRefGoogle Scholar
  45. 45.
    Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA. Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol. 2006;59(4):652–61.CrossRefGoogle Scholar
  46. 46.
    Romero-Reyes M, Akerman S, Nguyen E, Vijjeswarapu A, Hom B, Dong HW, et al. Spontaneous behavioral responses in the orofacial region: a model of trigeminal pain in mouse. Headache. 2013;53(1):137–51.CrossRefGoogle Scholar
  47. 47.
    Imbe H, Dubner R, Ren K. Masseteric inflammation-induced Fos protein expression in the trigeminal interpolaris/caudalis transition zone: contribution of somatosensory-vagal-adrenal integration. Brain Res. 1999;845(2):165–75.CrossRefGoogle Scholar
  48. 48.
    Yamazaki Y, Ren K, Shimada M, Iwata K. Modulation of paratrigeminal nociceptive neurons following temporomandibular joint inflammation in rats. Exp Neurol. 2008;214(2):209–18.  https://doi.org/10.1016/j.expneurol.2008.08.005.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bohotin C, Scholsem M, Multon S, Martin D, Bohotin V, Schoenen J. Vagus nerve stimulation in awake rats reduces formalin-induced nociceptive behaviour and fos-immunoreactivity in trigeminal nucleus caudalis. Pain. 2003;101(1–2):3–12.CrossRefGoogle Scholar
  50. 50.
    Timarova G, Steno A. Late-onset jaw and teeth pain mimicking trigeminal neuralgia associated with chronic vagal nerve stimulation: case series and review of the literature. BMC Neurol. 2017;17(1):113.  https://doi.org/10.1186/s12883-017-0892-4.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Carius A, Schulze-Bonhage A. Trigeminal pain under vagus nerve stimulation. Pain. 2005;118(1–2):271–3.  https://doi.org/10.1016/j.pain.2005.07.022.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Neural and Pain SciencesUniversity of Maryland BaltimoreBaltimoreUSA

Personalised recommendations