Trigeminal Mechanisms of Nociception

  • Anna P. AndreouEmail author
  • Lars Edvinsson
Part of the Headache book series (HEAD)


The trigeminal nerve (Vn) is the largest cranial nerve and it supplies sensory fibres to all craniofacial structures. Sensory innervation of the craniofacial region is important in functional, psychological and emotional aspects, given the significance of the head as an organ in whole, of facial communication and of all specialised sense organs of the head such as the retina, olfactory epithelium, taste papillae, tooth pulp and cochlea, which are highly innervated by trigeminal fibres [1]. Trigeminal fibres are organised to warn the organism against changing environmental conditions, ranging from changes in environmental chemicals, temperature, injury or other external stimuli. The craniofacial region has a rich innervation and an extensive somatosensory representation in the CNS. These aspects make the Vn the most complex of the 12 cranial nerves. Mechanisms of nociception along the trigeminal nerve are of particular interest in headache conditions and orofacial pain [2].


  1. 1.
    Crossman AR, Neary D. Cranial nerves and cranial nerve nuclei. In: Crossman AR, Neary D, editors. Neuroanatomy. Manchester: Elsevier; 2000. p. 103–16.Google Scholar
  2. 2.
    Shankland WE. The trigeminal nerve. Part I: an over-view. Cranio. 2000;18(4):238–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Schaltenbrand G, Walker AE. Anatomy of the brainstem. In: Stereotaxy of the human brain. New York: Thieme Medical Publishers; 1997. p. 36–59.Google Scholar
  4. 4.
    Tandrup T. Are the neurons in the dorsal root ganglion pseudounipolar? A comparison of the number of neurons and number of myelinated and unmyelinated fibres in the dorsal root. J Comp Neurol. 1995;357(3):341–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Hanani M. Satellite glial cells: more than just ‘rings around the neuron’. Neuron Glia Biol. 2010;6(1):1–2.PubMedCrossRefGoogle Scholar
  6. 6.
    Go JL, Kim PE, Zee CS. The trigeminal nerve. Semin Ultrasound CT MR. 2001;22(6):502–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Shankland WE. The trigeminal nerve. Part II: the ophthalmic division. Cranio. 2001;19(1):8–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Messlinger K, Dostrovsky JO, Strassman AM. Anatomy and physiology of head pain. In: Olesen J, et al., editors. The headaches. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 95–109.Google Scholar
  9. 9.
    Uddman R, Hara H, Edvinsson L. Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry. J Auton Nerv Syst. 1989;26(1):69–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Uddman R, Edvinsson L. Neuropeptides in the cerebral circulation. Cerebrovasc Brain Metab Rev. 1989;1(3):230–52.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Edvinsson L, Hara H, Uddman R. Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue: colocalization with different peptides. J Cereb Blood Flow Metab. 1989;9(2):212–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Mayberg MR, Zervas NT, Moskowitz MA. Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. J Comp Neurol. 1984;223(1):46–56.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Steiger HJ, Meakin CJ. The meningeal representation in the trigeminal ganglion--an experimental study in the cat. Headache. 1984;24(6):305–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Uddman R, Edvinsson L, Hara H. Axonal tracing of autonomic nerve fibers to the superficial temporal artery in the rat. Cell Tissue Res. 1989;256(3):559–65.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hara H, et al. Acetylcholine and vasoactive intestinal peptide in cerebral blood vessels: effect of extirpation of the sphenopalatine ganglion. J Cereb Blood Flow Metab. 1989;9(2):204–11.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    David OJ. Anatomy of the trigeminal nerve. Rev Fac Odontol Univ Nac (Cordoba). 1977;9(2):95–121.Google Scholar
  17. 17.
    Arvidsson J, Pfaller K, Gmeiner S. The ganglionic origins and central projections of primary sensory neurons innervating the upper and lower lips in the rat. Somatosens Mot Res. 1992;9(3):199–209.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Aigner M, et al. Somatotopic organization of primary afferent perikarya of the guinea-pig extraocular muscles in the trigeminal ganglion: a post-mortem DiI-tracing study. Exp Eye Res. 2000;70(4):411–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Marfurt CF. The somatotopic organization of the cat trigeminal ganglion as determined by the horseradish peroxidase technique. Anat Rec. 1981;201(1):105–18.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Schepelmann K, et al. Response properties of trigeminal brain stem neurons with input from dura mater encephali in the rat. Neuroscience. 1999;90(2):543–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Strassman A, et al. Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res. 1986;379(2):242–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Bartsch T, Goadsby PJ. Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain. 2003;126(Pt 8):1801–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Millan MJ. The induction of pain: an integrative review. Prog Neurobiol. 1999;57(1):1–164.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Eftekhari S, et al. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain. 2013;14(11):1289–303.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Woolf CJ, Ma Q. Nociceptors--noxious stimulus detectors. Neuron. 2007;55(3):353–64.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006;68:619–47.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sousa-Valente J, et al. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. Br J Pharmacol. 2014;171(10):2508–27.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dussor G, et al. Targeting TRP channels for novel migraine therapeutics. ACS Chem Neurosci. 2014;5(11):1085–96.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bron R, et al. Piezo2 expression in corneal afferent neurons. J Comp Neurol. 2014;522(13):2967–79.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Huang D, et al. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura. Mol Pain. 2012;8:66.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Marone IM, et al. TRPA1/NOX in the soma of trigeminal ganglion neurons mediates migraine-related pain of glyceryl trinitrate in mice. Brain. 2018;141(8):2312–28.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kim YS, et al. Expression of transient receptor potential ankyrin 1 (TRPA1) in the rat trigeminal sensory afferents and spinal dorsal horn. J Comp Neurol. 2010;518(5):687–98.PubMedCrossRefGoogle Scholar
  33. 33.
    Yamamoto Y, Hatakeyama T, Taniguchi K. Immunohistochemical colocalization of TREK-1, TREK-2 and TRAAK with TRP channels in the trigeminal ganglion cells. Neurosci Lett. 2009;454(2):129–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Holland PR, et al. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol. 2012;72(4):559–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Fu H, et al. Acid-sensing ion channels in trigeminal ganglion neurons innervating the orofacial region contribute to orofacial inflammatory pain. Clin Exp Pharmacol Physiol. 2016;43(2):193–202.PubMedCrossRefGoogle Scholar
  36. 36.
    Goadsby PJ, Classey JD. Evidence for serotonin (5-HT)1B, 5-HT1D and 5-HT1F receptor inhibitory effects on trigeminal neurons with craniovascular input. Neuroscience. 2003;122(2):491–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Ferrari MD, et al. Oral triptans (serotonin 5-HT(1B/1D) agonists) in acute migraine treatment: a meta-analysis of 53 trials. Lancet. 2001;358(9294):1668–75.PubMedCrossRefGoogle Scholar
  38. 38.
    Chasman DI, et al. Selectivity in genetic association with sub-classified migraine in women. PLoS Genet. 2014;10(5):e1004366.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chasman DI, et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet. 2011;43(7):695–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Esserlind AL, et al. Replication and meta-analysis of common variants identifies a genome-wide significant locus in migraine. Eur J Neurol. 2013;20(5):765–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Freilinger T, et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012;44(7):777–82.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ligthart L, et al. Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur J Hum Genet. 2011;19(8):901–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cady RJ, et al. Calcitonin gene-related peptide promotes cellular changes in trigeminal neurons and glia implicated in peripheral and central sensitization. Mol Pain. 2011;7:94.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol. 2002;66(1):19–59.PubMedCrossRefGoogle Scholar
  45. 45.
    Goto T, et al. Neuropeptides and ATP signaling in the trigeminal ganglion. Jpn Dent Sci Rev. 2017;53(4):117–24.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gunjigake KK, et al. Correlation between the appearance of neuropeptides in the rat trigeminal ganglion and reinnervation of the healing root socket after tooth extraction. Acta Histochem Cytochem. 2006;39(3):69–77.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kimberly CL, Byers MR. Inflammation of rat molar pulp and periodontium causes increased calcitonin gene-related peptide and axonal sprouting. Anat Rec. 1988;222(3):289–300.PubMedCrossRefGoogle Scholar
  48. 48.
    Uddman R, et al. Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci Lett. 1985;62(1):131–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Tajti J, et al. Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nerv Syst. 1999;76(2–3):176–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Eftekhari S, et al. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience. 2010;169(2):683–96.PubMedCrossRefGoogle Scholar
  51. 51.
    Lawson SN, Crepps B, Perl ER. Calcitonin gene-related peptide immunoreactivity and afferent receptive properties of dorsal root ganglion neurones in guinea-pigs. J Physiol. 2002;540(Pt 3):989–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lawson SN. Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-Fibres. Exp Physiol. 2002;87(2):239–44.PubMedCrossRefGoogle Scholar
  53. 53.
    Reuss S, Riemann R, Vollrath L. Substance P- and calcitonin gene-related peptide-like immunoreactive neurons in the rat trigeminal ganglion--with special reference to meningeal and pineal innervation. Acta Histochem. 1992;92(1):104–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Wahlestedt C, et al. Calcitonin gene-related peptide in the eye: release by sensory nerve stimulation and effects associated with neurogenic inflammation. Regul Pept. 1986;16(2):107–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Tsai SH, et al. Cerebral arterial innervation by nerve fibers containing calcitonin gene-related peptide (CGRP): I. distribution and origin of CGRP perivascular innervation in the rat. J Comp Neurol. 1988;271(3):435–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Edvinsson L. The Trigeminovascular pathway: role of CGRP and CGRP receptors in migraine. Headache. 2017;57(Suppl 2):47–55.PubMedCrossRefGoogle Scholar
  57. 57.
    Silverman JD, Kruger L. An interpretation of dental innervation based upon the pattern of calcitonin gene-related peptide (CGRP)-immunoreactive thin sensory axons. Somatosens Res. 1987;5(2):157–75.PubMedCrossRefGoogle Scholar
  58. 58.
    Luthman J, et al. Immunohistochemical studies of the neurochemical markers, CGRP, enkephalin, galanin, gamma-MSH, NPY, PHI, proctolin, PTH, somatostatin, SP, VIP, tyrosine hydroxylase and neurofilament in nerves and cells of the human attached gingiva. Arch Oral Biol. 1988;33(3):149–58.PubMedCrossRefGoogle Scholar
  59. 59.
    Takeda N, et al. Neurogenic inflammation in nasal allergy: histochemical and pharmacological studies in guinea pigs. A review. Acta Otolaryngol Suppl. 1993;501:21–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Blixt FW, et al. Distribution of CGRP and its receptor components CLR and RAMP1 in the rat retina. Exp Eye Res. 2017;161:124–31.PubMedCrossRefGoogle Scholar
  61. 61.
    Jansen I, et al. Localization and effects of neuropeptide Y, vasoactive intestinal polypeptide, substance P, and calcitonin gene-related peptide in human temporal arteries. Ann Neurol. 1986;20(4):496–501.PubMedCrossRefGoogle Scholar
  62. 62.
    Jansen I, et al. Distribution and effects of neuropeptide Y, vasoactive intestinal peptide, substance P, and calcitonin gene-related peptide in human middle meningeal arteries: comparison with cerebral and temporal arteries. Peptides. 1992;13(3):527–36.PubMedCrossRefGoogle Scholar
  63. 63.
    Edvinsson L, et al. Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat. Neurosci Lett. 1985;58(2):213–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Xiao Y, Richter JA, Hurley JH. Release of glutamate and CGRP from trigeminal ganglion neurons: role of calcium channels and 5-HT1 receptor signaling. Mol Pain. 2008;4:12.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Meng J, et al. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci. 2007;120(Pt 16):2864–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Frederiksen SD, et al. Expression of pituitary adenylate cyclase-activating peptide, calcitonin gene-related peptide and headache targets in the trigeminal ganglia of rats and humans. Neuroscience. 2018;393:319–32.PubMedCrossRefGoogle Scholar
  67. 67.
    Andreou AP, et al. Prospective real-world analysis of OnabotulinumtoxinA in chronic migraine post-National Institute for Health and Care Excellence UK technology appraisal. Eur J Neurol. 2018;25(8):1069–e83.PubMedCrossRefGoogle Scholar
  68. 68.
    Trasforini G, et al. Circadian profile of plasma calcitonin gene-related peptide in healthy man. J Clin Endocrinol Metab. 1991;73(5):945–51.PubMedCrossRefGoogle Scholar
  69. 69.
    Brain SD, et al. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985;313(5997):54–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Edvinsson L, Goadsby PJ. Neuropeptides in the cerebral circulation: relevance to headache. Cephalalgia. 1995;15(4):272–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Edvinsson L, Uddman R. Adrenergic, cholinergic and peptidergic nerve fibres in dura mater--involvement in headache? Cephalalgia. 1981;1(4):175–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Edvinsson L, et al. Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab. 1987;7(6):720–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Bull HA, et al. Neuropeptides induce release of nitric oxide from human dermal microvascular endothelial cells. J Invest Dermatol. 1996;106(4):655–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Chai W, et al. The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning in isolated rat hearts. Eur J Pharmacol. 2006;531(1–3):246–53.PubMedCrossRefGoogle Scholar
  75. 75.
    MaassenVanDenBrink A, et al. Wiping out CGRP: potential cardiovascular risks. Trends Pharmacol Sci. 2016;37(9):779–88.PubMedCrossRefGoogle Scholar
  76. 76.
    Edvinsson L, et al. Involvement of perivascular sensory fibers in the pathophysiology of cerebral vasospasm following subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1990;10(5):602–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Edvinsson L, et al. Reduced levels of calcitonin gene-related peptide-like immunoreactivity in human brain vessels after subarachnoid haemorrhage. Neurosci Lett. 1991;121(1–2):151–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Juul R, et al. Calcitonin gene-related peptide-LI in subarachnoid haemorrhage in man. Signs of activation of the trigemino-cerebrovascular system? Br J Neurosurg. 1990;4(3):171–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Juul R, et al. Alterations in perivascular dilatory neuropeptides (CGRP, SP, VIP) in the external jugular vein and in the cerebrospinal fluid following subarachnoid haemorrhage in man. Acta Neurochir. 1995;132(1–3):32–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Couture R, Cuello AC. Studies on the trigeminal antidromic vasodilatation and plasma extravasation in the rat. J Physiol. 1984;346:273–85.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Foreman JC. Substance P and calcitonin gene-related peptide: effects on mast cells and in human skin. Int Arch Allergy Appl Immunol. 1987;82(3–4):366–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Foreman JC. Peptides and neurogenic inflammation. Br Med Bull. 1987;43(2):386–400.PubMedCrossRefGoogle Scholar
  83. 83.
    Covasala O, et al. Calcitonin gene-related peptide receptors in rat trigeminal ganglion do not control spinal trigeminal activity. J Neurophysiol. 2012;108(2):431–40.PubMedCrossRefGoogle Scholar
  84. 84.
    Levy D, Burstein R, Strassman AM. Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol. 2005;58(5):698–705.PubMedCrossRefGoogle Scholar
  85. 85.
    Miletic V, Tan H. Iontophoretic application of calcitonin gene-related peptide produces a slow and prolonged excitation of neurons in the cat lumbar dorsal horn. Brain Res. 1988;446(1):169–72.PubMedCrossRefGoogle Scholar
  86. 86.
    Biella G, et al. Facilitatory role of calcitonin gene-related peptide (CGRP) on excitation induced by substance P (SP) and noxious stimuli in rat spinal dorsal horn neurons. An iontophoretic study in vivo. Brain Res. 1991;559(2):352–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Leem JW, et al. Effects of iontophoretically applied substance P, calcitonin gene-related peptide on excitability of dorsal horn neurones in rats. Yonsei Med J. 2001;42(1):74–83.PubMedCrossRefGoogle Scholar
  88. 88.
    Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol. 2004;142(7):1171–81.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Yu Y, Lundeberg T, Yu LC. Role of calcitonin gene-related peptide and its antagonist on the evoked discharge frequency of wide dynamic range neurons in the dorsal horn of the spinal cord in rats. Regul Pept. 2002;103(1):23–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Bellamy JL, Cady RK, Durham PL. Salivary levels of CGRP and VIP in rhinosinusitis and migraine patients. Headache. 2006;46(1):24–33.PubMedCrossRefGoogle Scholar
  91. 91.
    Juhasz G, et al. NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain. 2003;106(3):461–70.PubMedCrossRefGoogle Scholar
  92. 92.
    Hansen JM, et al. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia. 2010;30(10):1179–86.PubMedCrossRefGoogle Scholar
  93. 93.
    Voss T, et al. A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia. 2016;36(9):887–98.PubMedCrossRefGoogle Scholar
  94. 94.
    Yao G, et al. Therapeutic effects and safety of olcegepant and telcagepant for migraine: a meta-analysis. Neural Regen Res. 2013;8(10):938–47.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Bramanti P, et al. Ictal and interictal hypoactivation of the occipital cortex in migraine with aura. A neuroimaging and electrophysiological study. Funct Neurol. 2005;20(4):169–71.PubMedGoogle Scholar
  96. 96.
    Nichols PL, et al. Potent oxadiazole CGRP receptor antagonists for the potential treatment of migraine. Bioorg Med Chem Lett. 2010;20(4):1368–72.PubMedCrossRefGoogle Scholar
  97. 97.
    Israel H, Neeb L, Reuter U. CGRP monoclonal antibodies for the preventative treatment of migraine. Curr Pain Headache Rep. 2018;22(5):38.PubMedCrossRefGoogle Scholar
  98. 98.
    Edvinsson L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br J Clin Pharmacol. 2015;80(2):193–9.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33(1):48–56.PubMedCrossRefGoogle Scholar
  100. 100.
    Goadsby PJ, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain. 1994;117(Pt 3):427–34.PubMedCrossRefGoogle Scholar
  101. 101.
    Juhasz G, et al. Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia. 2005;25(3):179–83.PubMedCrossRefGoogle Scholar
  102. 102.
    Hansen JM, et al. Sumatriptan does not change calcitonin gene-related peptide in the cephalic and extracephalic circulation in healthy volunteers. J Headache Pain. 2009;10(2):85–91.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Zagami AS, Goadsby PJ, Edvinsson L. Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides. 1990;16(2):69–75.PubMedCrossRefGoogle Scholar
  104. 104.
    Williamson DJ, et al. Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on dural vessel diameter in the anaesthetized rat. Cephalalgia. 1997;17(4):518–24.PubMedCrossRefGoogle Scholar
  105. 105.
    Williamson DJ, et al. Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat--intravital microscope studies. Cephalalgia. 1997;17(4):525–31.PubMedCrossRefGoogle Scholar
  106. 106.
    Goadsby PJ, Edvinsson L. Joint 1994 Wolff award presentation. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache. 1994;34(7):394–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Bae JY, et al. Quantitative analysis of afferents expressing substance P, calcitonin gene-related peptide, isolectin B4, neurofilament 200, and Peripherin in the sensory root of the rat trigeminal ganglion. J Comp Neurol. 2015;523(1):126–38.PubMedCrossRefGoogle Scholar
  108. 108.
    Del Fiacco M, et al. Substance P-like immunoreactivity in the human trigeminal ganglion. Neurosci Lett. 1990;110(1–2):16–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Lehtosalo JI, et al. Substance P-like immunoreactivity in the trigeminal ganglion. A fluorescence, light and electron microscope study. Histochemistry. 1984;80(5):421–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Skofitsch G, Jacobowitz DM. Calcitonin gene-related peptide coexists with substance P in capsaicin sensitive neurons and sensory ganglia of the rat. Peptides. 1985;6(4):747–54.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Lee Y, et al. Coexistence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis. Brain Res. 1985;330(1):194–6.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Liu-Chen LY, Han DH, Moskowitz MA. Pia arachnoid contains substance P originating from trigeminal neurons. Neuroscience. 1983;9(4):803–8.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Lehtosalo JI. Substance P-like immunoreactive trigeminal ganglion cells supplying the cornea. Histochemistry. 1984;80(3):273–6.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Mingomataj E, et al. Trigeminal nasal-specific neurons respond to nerve growth factor with substance-P biosynthesis. Clin Exp Allergy. 2008;38(7):1203–11.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Saito K, Liu-Chen LY, Moskowitz MA. Substance P-like immunoreactivity in rat forebrain leptomeninges and cerebral vessels originates from the trigeminal but not sympathetic ganglia. Brain Res. 1987;403(1):66–71.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Cuello AC, Del Fiacco M, Paxinos G. The central and peripheral ends of the substance P-containing sensory neurones in the rat trigeminal system. Brain Res. 1978;152(3):499–500.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Mehboob R. Substance P/neurokinin 1 and trigeminal system: a possible link to the pathogenesis in sudden perinatal deaths. Front Neurol. 2017;8:82.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Edvinsson L, et al. Neurokinin A in cerebral vessels: characterization, localization and effects in vitro. Regul Pept. 1988;20(3):181–97.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    McCarthy PW, Lawson SN. Cell type and conduction velocity of rat primary sensory neurons with substance P-like immunoreactivity. Neuroscience. 1989;28(3):745–53.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    McCarthy PW, Lawson SN. Cell type and conduction velocity of rat primary sensory neurons with calcitonin gene-related peptide-like immunoreactivity. Neuroscience. 1990;34(3):623–32.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Newby DE, et al. Substance P-induced vasodilatation is mediated by the neurokinin type 1 receptor but does not contribute to basal vascular tone in man. Br J Clin Pharmacol. 1999;48(3):336–44.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bossaller C, et al. In vivo measurement of endothelium-dependent vasodilation with substance P in man. Herz. 1992;17(5):284–90.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Nicoletti M, et al. Impact of neuropeptide substance P an inflammatory compound on arachidonic acid compound generation. Int J Immunopathol Pharmacol. 2012;25(4):849–57.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Bill A, et al. Substance P: release on trigeminal nerve stimulation, effects in the eye. Acta Physiol Scand. 1979;106(3):371–3.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Teodoro FC, et al. Peripheral substance P and neurokinin-1 receptors have a role in inflammatory and neuropathic orofacial pain models. Neuropeptides. 2013;47(3):199–206.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Lu X, et al. Substance P expression in the distal cerebrospinal fluid-contacting neurons and spinal trigeminal nucleus in formalin-induced the orofacial inflammatory pain in rats. Brain Res Bull. 2009;78(4–5):139–44.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Spigelman I, Puil E. Substance P actions on sensory neurons. Ann N Y Acad Sci. 1991;632:220–8.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Ottosson A, Edvinsson L. Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia. 1997;17(3):166–74.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Guo W, et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci. 2007;27(22):6006–18.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Caudle RM, et al. Central sensitization in the trigeminal nucleus caudalis produced by a conjugate of substance P and the A subunit of cholera toxin. J Pain. 2010;11(9):838–46.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    De Felipe C, et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 1998;392(6674):394–7.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Strittmatter M, et al. Substance P, somatostatin and monoaminergic transmitters in the cerebrospinal fluid of patients with chronic idiopathic trigeminal neuralgia. Schmerz. 1996;10(5):261–8.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Goldstein DJ, et al. Lanepitant an NK-1 antagonist in migraine prophylaxis. Cephalalgia. 1999;19:377.Google Scholar
  134. 134.
    Goldstein DJ, et al. Lanepitant, an NK-1 antagonist, in migraine prevention. Cephalalgia. 2001;21(2):102–6.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Goldstein DJ, et al. Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia. 1997;17(7):785–90.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Miyata A, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164(1):567–74.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Dickson L, Finlayson K. VPAC and PAC receptors: from ligands to function. Pharmacol Ther. 2009;121(3):294–316.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Moller K, et al. Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience. 1993;57(3):725–32.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Eftekhari S, et al. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier. Brain Res. 2015;1600:93–109.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Larsen JO, et al. Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in the mesencephalic trigeminal nucleus of the rat after transsection of the masseteric nerve. Brain Res Mol Brain Res. 1997;46(1–2):109–17.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Csati A, et al. Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion -- interaction with the sensory system. Brain Res. 2012;1435:29–39.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Bhatt DK, et al. PACAP-38 infusion causes sustained vasodilation of the middle meningeal artery in the rat: possible involvement of mast cells. Cephalalgia. 2014;34(11):877–86.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Nakajima E, et al. Pituitary adenylate cyclase-activating peptide induces neurite outgrowth in cultured monkey trigeminal ganglion cells: involvement of receptor PAC1. Mol Vis. 2013;19:174–83.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Saghy E, et al. Stimulatory effect of pituitary adenylate cyclase-activating polypeptide 6-38, M65 and vasoactive intestinal polypeptide 6-28 on trigeminal sensory neurons. Neuroscience. 2015;308:144–56.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Markovics A, et al. Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiol Dis. 2012;45(1):633–44.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Akerman S, Goadsby PJ. Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: relevance to migraine. Sci Transl Med. 2015;7(308):308ra157.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Kortesi T, et al. Kynurenic acid inhibits the electrical stimulation induced elevated pituitary adenylate cyclase-activating polypeptide expression in the TNC. Front Neurol. 2017;8:745.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Gazerani P, Cairns BE. New insight in migraine pathogenesis: vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan. Scand J Pain. 2013;4(4):208–10.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Cernuda-Morollon E, et al. No change in interictal PACAP levels in peripheral blood in women with chronic migraine. Headache. 2016;56(9):1448–54.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Zagami AS, Edvinsson L, Goadsby PJ. Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol. 2014;1(12):1036–40.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Guo S, et al. Part I: pituitary adenylate cyclase-activating polypeptide-38 induced migraine-like attacks in patients with and without familial aggregation of migraine. Cephalalgia. 2017;37(2):125–35.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Guo S, et al. Part II: biochemical changes after pituitary adenylate cyclase-activating polypeptide-38 infusion in migraine patients. Cephalalgia. 2017;37(2):136–47.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Hansen JM, et al. Vasoactive intestinal polypeptide evokes only a minimal headache in healthy volunteers. Cephalalgia. 2006;26(8):992–1003.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Tuka B, et al. Release of PACAP-38 in episodic cluster headache patients - an exploratory study. J Headache Pain. 2016;17(1):69.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Cetkovic M, et al. Vasculature and neurovascular relationships of the trigeminal nerve root. Acta Neurochir. 2011;153(5):1051–7; discussion 1057.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Krisht A, et al. The blood supply of the intracavernous cranial nerves: an anatomic study. Neurosurgery. 1994;34(2):275–9; discussion 279.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Love S, Coakham HB. Trigeminal neuralgia: pathology and pathogenesis. Brain. 2001;124(Pt 12):2347–60.PubMedCrossRefGoogle Scholar
  158. 158.
    Adamczyk M, et al. Trigeminal nerve - artery contact in people without trigeminal neuralgia - MR study. Med Sci Monit. 2007;13(Suppl 1):38–43.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Rappaport ZH, Devor M. Trigeminal neuralgia: the role of self-sustaining discharge in the trigeminal ganglion. Pain. 1994;56(2):127–38.PubMedCrossRefGoogle Scholar
  160. 160.
    Sindou M, Howeidy T, Acevedo G. Anatomical observations during microvascular decompression for idiopathic trigeminal neuralgia (with correlations between topography of pain and site of the neurovascular conflict). Prospective study in a series of 579 patients. Acta Neurochir. 2002;144(1):1–12; discussion 12–3.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Hilton DA, et al. Pathological findings associated with trigeminal neuralgia caused by vascular compression. Neurosurgery. 1994;35(2):299–303; discussion 303.PubMedCrossRefGoogle Scholar
  162. 162.
    Love S, Hilton DA, Coakham HB. Central demyelination of the Vth nerve root in trigeminal neuralgia associated with vascular compression. Brain Pathol. 1998;8(1):1–11; discussion 11–2.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Devor M, Govrin-Lippmann R, Rappaport ZH. Mechanism of trigeminal neuralgia: an ultrastructural analysis of trigeminal root specimens obtained during microvascular decompression surgery. J Neurosurg. 2002;96(3):532–43.PubMedCrossRefGoogle Scholar
  164. 164.
    Brisman R, Khandji AG, Mooij RB. Trigeminal nerve-blood vessel relationship as revealed by high-resolution magnetic resonance imaging and its effect on pain relief after gamma knife radiosurgery for trigeminal neuralgia. Neurosurgery. 2002;50(6):1261–6; discussion 1266–7.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Edvinsson L, Uddman R. Neurobiology in primary headaches. Brain Res Brain Res Rev. 2005;48(3):438–56.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Edvinsson L, Goadsby PJ. Neuropeptises in headache. Eur J Neurol. 1998;5:329–41.CrossRefGoogle Scholar
  167. 167.
    Edvinsson L, et al. Neuropeptide Y: cerebrovascular innervation and vasomotor effects in the cat. Neurosci Lett. 1983;43(1):79–84.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Olesen J, Jansen-Olesen I. Nitric oxide mechanisms in migraine. Pathol Biol (Paris). 2000;48(7):648–57.Google Scholar
  169. 169.
    Edvinsson L, et al. Cerebellar distribution of calcitonin gene-related peptide (CGRP) and its receptor components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) in rat. Mol Cell Neurosci. 2011;46(1):333–9.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Nieuwenhuys R, Voogd J, van Huijzen C. The human central nervous system- A synopsis and atlas. Berlin: Springer; 1988.CrossRefGoogle Scholar
  171. 171.
    Wilkinson JL. Neuroanatomy for medical students. 3rd ed. Bristol: John Wright & Sons; 1986.Google Scholar
  172. 172.
    Bartsch T, Goadsby PJ. The trigeminocervical complex and migraine: current concepts and synthesis. Curr Pain Headache Rep. 2003;7(5):371–6.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Olszewski J. On the anatomical and functional organization of the spinal trigeminal nucleus. J Comp Neurol. 1950;92(3):401–13.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Strassman AM, Potrebic S, Maciewicz RJ. Anatomical properties of brainstem trigeminal neurons that respond to electrical stimulation of dural blood vessels. J Comp Neurol. 1994;346(3):349–65.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Hu JW, Dostrovsky JO, Sessle BJ. Functional properties of neurons in cat trigeminal subnucleus caudalis (medullary dorsal horn). I. Responses to oral-facial noxious and nonnoxious stimuli and projections to thalamus and subnucleus oralis. J Neurophysiol. 1981;45(2):173–92.PubMedCrossRefGoogle Scholar
  176. 176.
    Hu JW. Response properties of nociceptive and non-nociceptive neurons in the rat’s trigeminal subnucleus caudalis (medullary dorsal horn) related to cutaneous and deep craniofacial afferent stimulation and modulation by diffuse noxious inhibitory controls. Pain. 1990;41(3):331–45.PubMedCrossRefGoogle Scholar
  177. 177.
    Mosso JA, Kruger L. Receptor categories represented in spinal trigeminal nucleus caudalis. J Neurophysiol. 1973;36(3):472–88.PubMedCrossRefGoogle Scholar
  178. 178.
    Dubner R, Bennett GJ. Spinal and trigeminal mechanisms of nociception. Annu Rev Neurosci. 1983;6:381–418.PubMedCrossRefGoogle Scholar
  179. 179.
    Goadsby PJ, Hoskin KL. The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J Anat. 1997;190(Pt 3):367–75.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Hoskin KL, Kaube H, Goadsby PJ. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiological study. Brain. 1996;119(Pt 1):249–56.PubMedCrossRefGoogle Scholar
  181. 181.
    Kaube H, et al. Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res. 1993;629(1):95–102.PubMedCrossRefGoogle Scholar
  182. 182.
    Liu Y, et al. Central projections of sensory innervation of the rat superficial temporal artery. Brain Res. 2003;966(1):126–33.PubMedCrossRefGoogle Scholar
  183. 183.
    Liu Y, Broman J, Edvinsson L. Central projections of sensory innervation of the rat superior sagittal sinus. Neuroscience. 2004;129(2):431–7.PubMedCrossRefGoogle Scholar
  184. 184.
    Davis KD, Dostrovsky JO. Activation of trigeminal brain-stem nociceptive neurons by dural artery stimulation. Pain. 1986;25(3):395–401.PubMedCrossRefGoogle Scholar
  185. 185.
    Bolton S, O’Shaughnessy CT, Goadsby PJ. Properties of neurons in the trigeminal nucleus caudalis responding to noxious dural and facial stimulation. Brain Res. 2005;1046(1–2):122–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Goadsby PJ, Zagami AS. Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical spinal cord of the cat. Brain. 1991;114(Pt 2):1001–11.PubMedCrossRefGoogle Scholar
  187. 187.
    Henry MA, Nousek-Goebl NA, Westrum LE. Light and electron microscopic localization of calcitonin gene-related peptide immunoreactivity in lamina II of the feline trigeminal pars caudalis/medullary dorsal horn: a qualitative study. Synapse. 1993;13(2):99–107.PubMedCrossRefGoogle Scholar
  188. 188.
    Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol. 1988;23(2):193–6.PubMedCrossRefGoogle Scholar
  189. 189.
    Weiller C, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1(7):658–60.PubMedCrossRefGoogle Scholar
  190. 190.
    Bahra A, et al. Brainstem activation specific to migraine headache. Lancet. 2001;357(9261):1016–7.PubMedCrossRefGoogle Scholar
  191. 191.
    Goadsby PJ, Lipton RB, Ferrari MD. Migraine--current understanding and treatment. N Engl J Med. 2002;346(4):257–70.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Scheurer S, Gottschall J, Groh V. Afferent projections of the rat major occipital nerve studied by transganglionic transport of HRP. Anat Embryol (Berl). 1983;167(3):425–38.CrossRefGoogle Scholar
  193. 193.
    Bartsch T, Goadsby PJ. Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain. 2002;125(Pt 7):1496–509.CrossRefGoogle Scholar
  194. 194.
    Bakker DA, Richmond FJ, Abrahams VC. Central projections from cat suboccipital muscles: a study using transganglionic transport of horseradish peroxidase. J Comp Neurol. 1984;228(3):409–21.PubMedCrossRefGoogle Scholar
  195. 195.
    Neuhuber WL, Zenker W. Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei. J Comp Neurol. 1989;280(2):231–53.PubMedCrossRefGoogle Scholar
  196. 196.
    Kerr FW, Olafson RA. Trigeminal and cervical volleys. Convergence on single units in the spinal gray at C-1 and C-2. Arch Neurol. 1961;5:171–8.PubMedCrossRefGoogle Scholar
  197. 197.
    Elchami Z, et al. Effectiveness of occipital nerve block for the treatment of acute exacerbation of cluster headache. Headache. 2014;54:37.Google Scholar
  198. 198.
    Inan L, et al. Greater occipital nerve blocks with bupivacaine in the treatment of chronic migraine. Randomized, multicenter, double-blind, parallel, placebo-controlled study. Eur J Neurol. 2014;21:52.Google Scholar
  199. 199.
    Lambru G, et al. Greater occipital nerve blocks in chronic cluster headache: a prospective open-label study. Eur J Neurol. 2014;21(2):338–43.PubMedCrossRefGoogle Scholar
  200. 200.
    Weiner RL, Reed KL. Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation. 1999;2(3):217–21.PubMedCrossRefGoogle Scholar
  201. 201.
    Bermejo PE, del Pozo C. Long term results for occipital nerve stimulation in refractory chronic migraine. Cephalalgia. 2017;37:120–1.Google Scholar
  202. 202.
    Serra G, Marchioretto F. Occipital nerve stimulation for chronic migraine: a randomized trial. Pain Physician. 2012;15(3):245–53.PubMedGoogle Scholar
  203. 203.
    Goadsby PJ, et al. ONSTIM: occipital nerve stimulation for the treatment of chronic migraine. Eur J Neurol. 2005;12:198.Google Scholar
  204. 204.
    Guillamon EG, et al. Long-term outcome in occipital nerve stimulation in refractory chronic cluster headache. Cephalalgia. 2015;35:84.Google Scholar
  205. 205.
    Lainez MJA, et al. Efficacy and safety of occipital nerve stimulation for treatment of chronic cluster headache. Headache. 2008;48:S15.Google Scholar
  206. 206.
    Schwedt TJ, et al. Occipital nerve stimulation for chronic cluster headache and hemicrania continua: pain relief and persistence of autonomic features. Cephalalgia. 2006;26(8):1025–7.PubMedCrossRefGoogle Scholar
  207. 207.
    Nakai M, et al. Parasympathetic cerebrovasodilator center of the facial nerve. Circ Res. 1993;72(2):470–5.PubMedCrossRefGoogle Scholar
  208. 208.
    May A, et al. Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat Med. 1999;5(7):836–8.PubMedCrossRefGoogle Scholar
  209. 209.
    Obermann M, et al. Prevalence of trigeminal autonomic symptoms in migraine: a population-based study. Cephalalgia. 2007;27(6):504–9.PubMedCrossRefGoogle Scholar
  210. 210.
    Karsan N, et al. The phenotype of premonitory symptoms and migraine headache triggered with nitroglycerin. J Neurol Neurosurg Psychiatr. 2016;87(12):e1.75.CrossRefGoogle Scholar
  211. 211.
    Drummond PD, Lance JW. Pathological sweating and flushing accompanying the trigeminal lacrimal reflex in patients with cluster headache and in patients with a confirmed site of cervical sympathetic deficit. Evidence for parasympathetic cross-innervation. Brain. 1992;115(Pt 5):1429–45.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Edvinsson L, Uddman R, Juul R. Peptidergic innervation of the cerebral circulation. Role in subarachnoid hemorrhage in man. Neurosurg Rev. 1990;13(4):265–72.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Spencer SE, et al. CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res. 1990;534(1–2):149–69.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Akerman S, et al. A translational in vivo model of trigeminal autonomic cephalalgias - therapeutic characterization with brainstem stimulation. J Headache Pain. 2013;14(S1):P36.PubMedCentralCrossRefGoogle Scholar
  215. 215.
    Frese A, Evers S, May A. Autonomic activation in experimental trigeminal pain. Cephalalgia. 2003;23(1):67–8.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Edvinsson L, et al. Innervation of the human cerebral circulation. J Auton Nerv Syst. 1994;49 Suppl:S91–6.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Goadsby PJ, Uddman R, Edvinsson L. Cerebral vasodilatation in the cat involves nitric oxide from parasympathetic nerves. Brain Res. 1996;707(1):110–8.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Steinberg A, et al. Expression of messenger molecules and receptors in rat and human sphenopalatine ganglion indicating therapeutic targets. J Headache Pain. 2016;17(1):78.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Goadsby PJ. Characteristics of facial nerve-elicited cerebral vasodilatation determined using laser Doppler flowmetry. Am J Phys. 1991;260(1 Pt 2):R255–62.Google Scholar
  220. 220.
    Goadsby PJ. Sphenopalatine ganglion stimulation increases regional cerebral blood flow independent of glucose utilization in the cat. Brain Res. 1990;506(1):145–8.PubMedCrossRefGoogle Scholar
  221. 221.
    Fanciullacci M, et al. Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain. 1995;60(2):119–23.PubMedCrossRefGoogle Scholar
  222. 222.
    Nicolodi M, Del Bianco E. Sensory neuropeptides (substance P, calcitonin gene-related peptide) and vasoactive intestinal polypeptide in human saliva: their pattern in migraine and cluster headache. Cephalalgia. 1990;10(1):39–50.PubMedCrossRefGoogle Scholar
  223. 223.
    Malick A, Burstein R. Cells of origin of the trigeminohypothalamic tract in the rat. J Comp Neurol. 1998;400(1):125–44.PubMedCrossRefGoogle Scholar
  224. 224.
    Malick A, Strassman RM, Burstein R. Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol. 2000;84(4):2078–112.PubMedCrossRefGoogle Scholar
  225. 225.
    May A. Cluster headache: pathogenesis, diagnosis, and management. Lancet. 2005;366(9488):843–55.PubMedCrossRefGoogle Scholar
  226. 226.
    Leone M, et al. Hypothalamic deep brain stimulation for intractable chronic cluster headache: a 3-year follow-up. Neurol Sci. 2003;24(Suppl 2):S143–5.PubMedGoogle Scholar
  227. 227.
    Lainez MJ, et al. Sphenopalatine ganglion stimulation for the treatment of cluster headache. Ther Adv Neurol Disord. 2014;7(3):162–8.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Schoenen J, et al. Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: a randomized, sham-controlled study. Cephalalgia. 2013;33(10):816–30.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Ferraro S, et al. Defective functional connectivity between posterior hypothalamus and regions of the diencephalic-mesencephalic junction in chronic cluster headache. Cephalalgia. 2018;38(13):1910–8.PubMedCrossRefGoogle Scholar
  230. 230.
    Qiu E, et al. Abnormal brain functional connectivity of the hypothalamus in cluster headaches. PLoS One. 2013;8(2):e57896.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Sprenger T, et al. Specific hypothalamic activation during a spontaneous cluster headache attack. Neurology. 2004;62(3):516–7.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Goadsby PJ, May A. PET demonstration of hypothalamic activation in cluster headache. Neurology. 1999;52(7):1522.PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    May A, et al. Hypothalamic activation in cluster headache attacks. Lancet. 1998;352(9124):275–8.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Craig AD, et al. A thalamic nucleus specific for pain and temperature sensation. Nature. 1994;372(6508):770–3.PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Gaze RM, Gordon G. The representation of cutaneous sense in the thalamus of the cat and monkey. Q J Exp Physiol Cogn Med Sci. 1954;39(4):279–304.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Burstein R, et al. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol. 1998;79(2):964–82.PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Andreou AP, Goadsby PJ. Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert Opin Investig Drugs. 2009;18(6):789–803.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Greenamyre JT, Young AB, Penney JB. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system. J Neurosci. 1984;4(8):2133–44.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Kai-Kai MA, Howe R. Glutamate-immunoreactivity in the trigeminal and dorsal root ganglia, and intraspinal neurons and fibres in the dorsal horn of the rat. Histochem J. 1991;23(4):171–9.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Hill RG, Salt TE. An ionophoretic study of the responses of rat caudal trigeminal nucleus neurones to non-noxious mechanical sensory stimuli. J Physiol. 1982;327:65–78.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Tallaksen-Greene SJ, et al. Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neurosci Lett. 1992;141(1):79–83.PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Broman J, Ottersen OP. Cervicothalamic tract terminals are enriched in glutamate-like immunoreactivity: an electron microscopic double-labeling study in the cat. J Neurosci. 1992;12(1):204–21.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Goadsby PJ, Classey JD. Glutamatergic transmission in the trigeminal nucleus assessed with local blood flow. Brain Res. 2000;875(1–2):119–24.PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Bereiter DA, Benetti AP. Excitatory amino release within spinal trigeminal nucleus after mustard oil injection into the temporomandibular joint region of the rat. Pain. 1996;67(2–3):451–9.PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Oshinsky ML, Luo J. Neurochemistry of trigeminal activation in an animal model of migraine. Headache. 2006;46(Suppl 1):S39–44.PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Ma QP. Co-localization of 5-HT(1B/1D/1F) receptors and glutamate in trigeminal ganglia in rats. Neuroreport. 2001;12(8):1589–91.PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Silva E, et al. Extracellular glutamate, aspartate and arginine increase in the ventral posterolateral thalamic nucleus during nociceptive stimulation. Brain Res. 2001;923(1–2):45–9.PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Salt TE. Glutamate receptor functions in sensory relay in the thalamus. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357(1428):1759–66.CrossRefGoogle Scholar
  249. 249.
    Halpain S, Wieczorek CM, Rainbow TC. Localization of L-glutamate receptors in rat brain by quantitative autoradiography. J Neurosci. 1984;4(9):2247–58.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Watanabe M, Mishina M, Inoue Y. Distinct gene expression of the N-methyl-D-aspartate receptor channel subunit in peripheral neurons of the mouse sensory ganglia and adrenal gland. Neurosci Lett. 1994;165(1–2):183–6.PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Sahara Y, et al. Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons. J Neurosci. 1997;17(17):6611–20.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Tamaru Y, et al. Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience. 2001;106(3):481–503.PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Peres MF, et al. Cerebrospinal fluid glutamate levels in chronic migraine. Cephalalgia. 2004;24(9):735–9.PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Martinez F, et al. Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia. 1993;13(2):89–93.PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Rothrock JF, et al. Cerebrospinal fluid analyses in migraine patients and controls. Cephalalgia. 1995;15(6):489–93.PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Burstein R, et al. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47(5):614–24.PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain. 2001;89(2–3):107–10.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Messlinger K, Burstein R. Anatomy of the central nervous sytem pathways related to head pain. In: The headaches. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 55–76.Google Scholar
  259. 259.
    Fields HL, Heinricher MM, Mason P. Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci. 1991;14:219–45.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12(10):570–84.PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Fields HL, et al. The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J Neurosci. 1983;3(12):2545–52.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Bjorklund A, Skagerberg G. Evidence for a major spinal cord projection from the diencephalic A11 dopamine cell group in the rat using transmitter-specific fluorescent retrograde tracing. Brain Res. 1979;177(1):170–5.PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Behbehani MM. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol. 1995;46(6):575–605.PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Afridi SK, et al. A positron emission tomographic study in spontaneous migraine. Arch Neurol. 2005;62(8):1270–5.PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Afridi SK, et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain. 2005;128(Pt 4):932–9.PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Welch KM, et al. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache. 2001;41(7):629–37.PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Derbyshire SW, et al. Cerebral responses to pain in patients with atypical facial pain measured by positron emission tomography. J Neurol Neurosurg Psychiatry. 1994;57(10):1166–72.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    May A, et al. Experimental cranial pain elicited by capsaicin: a PET study. Pain. 1998;74(1):61–6.PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    May A, Goadsby PJ. Cluster headache: imaging and other developments. Curr Opin Neurol. 1998;11(3):199–203.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    May A, et al. Functional magnetic resonance imaging in spontaneous attacks of SUNCT: short-lasting neuralgiform headache with conjunctival injection and tearing. Ann Neurol. 1999;46(5):791–4.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Headache Research, Wolfson Centre for Age Related DisorderInstitute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUK
  2. 2.Headache CentreGuy’s and St Thomas’ NHS Foundation TrustLondonUK
  3. 3.Department of Internal Medicine, Institute of Clinical SciencesLund UniversityLundSweden

Personalised recommendations